Server IP : 66.29.132.122 / Your IP : 3.22.70.210 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/thread-self/root/proc/self/root/proc/self/root/opt/hc_python/lib64/python3.8/site-packages/aenum/ |
Upload File : |
from __future__ import print_function from ._common import * from ._constant import NamedConstant from ._tuple import NamedTuple from collections import defaultdict import sys as _sys __all__ = [ 'bit_count', 'is_single_bit', 'bin', 'property', 'bits', 'AddValue', 'MagicValue', 'MultiValue', 'NoAlias', 'Unique', 'enum', 'auto', 'AddValueEnum', 'MultiValueEnum', 'NoAliasEnum', 'UniqueEnum', 'AutoNumberEnum', 'OrderedEnum', 'unique', 'no_arg', 'extend_enum', 'enum_property', 'EnumType', 'EnumMeta', 'EnumDict', 'Enum', 'IntEnum', 'StrEnum', 'Flag', 'IntFlag', 'LowerStrEnum', 'UpperStrEnum', 'ReprEnum', 'SqliteEnum', 'sqlite3', 'FlagBoundary', 'STRICT', 'CONFORM', 'EJECT', 'KEEP', 'add_stdlib_integration', 'remove_stdlib_integration', 'export', 'cls2module', '_reduce_ex_by_name', 'show_flag_values', ] _bltin_bin = bin try: import sqlite3 except ImportError: sqlite3 = None __all__.remove('SqliteEnum') try: RecursionError except NameError: # python3.4 RecursionError = RuntimeError try: any except NameError: def any(iterable): for element in iterable: if element: return True return False # derive from stdlib enum if possible stdlib_enums = () try: import enum if hasattr(enum, 'version'): raise ImportError('wrong version') else: from enum import EnumMeta as StdlibEnumMeta, Enum as StdlibEnum, IntEnum as StdlibIntEnum StdlibFlag = StdlibIntFlag = StdlibStrEnum = StdlibReprEnum = None stdlib_enums = StdlibEnum, StdlibIntEnum except ImportError: StdlibEnumMeta = StdlibEnum = StdlibIntEnum = StdlibIntFlag = StdlibFlag = StdlibStrEnum = StdlibStrEnum = StdlibReprEnum = None if StdlibEnum: try: from enum import IntFlag as StdlibIntFlag, Flag as StdlibFlag stdlib_enums += StdlibFlag, StdlibIntFlag except ImportError: pass try: from enum import StrEnum as StdlibStrEnum stdlib_enums += (StdlibStrEnum, ) except ImportError: pass try: from enum import ReprEnum as StdlibReprEnum stdlib_enums += (StdlibReprEnum, ) except ImportError: pass # will be exported later MagicValue = AddValue = MultiValue = NoAlias = Unique = None def export(collection, namespace=None): """ export([collection,] namespace) -> Export members to target namespace. If collection is not given, act as a decorator. """ if namespace is None: namespace = collection def export_decorator(collection): return export(collection, namespace) return export_decorator elif issubclass(collection, NamedConstant): for n, c in collection.__dict__.items(): if isinstance(c, NamedConstant): namespace[n] = c elif issubclass(collection, Enum) or stdlib_enums and issubclass(collection, stdlib_enums): data = collection.__members__.items() for n, m in data: namespace[n] = m else: raise TypeError('%r is not a supported collection' % (collection,) ) return collection def bit_count(num): """ return number of set bits Counting bits set, Brian Kernighan's way* unsigned int v; // count the number of bits set in v unsigned int c; // c accumulates the total bits set in v for (c = 0; v; c++) { v &= v - 1; } //clear the least significant bit set This method goes through as many iterations as there are set bits. So if we have a 32-bit word with only the high bit set, then it will only go once through the loop. * The C Programming Language 2nd Ed., Kernighan & Ritchie, 1988. This works because each subtraction "borrows" from the lowest 1-bit. For example: loop pass 1 loop pass 2 ----------- ----------- 101000 100000 - 1 - 1 = 100111 = 011111 & 101000 & 100000 = 100000 = 0 It is an excellent technique for Python, since the size of the integer need not be determined beforehand. (from https://wiki.python.org/moin/BitManipulation) """ count = 0 while num: num &= num - 1 count += 1 return count def is_single_bit(value): """ True if only one bit set in value (should be an int) """ if value == 0: return False value &= value - 1 return value == 0 def _iter_bits_lsb(value): """ Return each bit value one at a time. >>> list(_iter_bits_lsb(6)) [2, 4] """ while value: bit = value & (~value + 1) yield bit value ^= bit def bin(value, max_bits=None): """ Like built-in bin(), except negative values are represented in twos-compliment, and the leading bit always indicates sign (0=positive, 1=negative). >>> bin(10) '0b0 1010' >>> bin(~10) # ~10 is -11 '0b1 0101' """ ceiling = 2 ** (value).bit_length() if value >= 0: s = _bltin_bin(value + ceiling).replace('1', '0', 1) else: s = _bltin_bin(~value ^ (ceiling - 1) + ceiling) sign = s[:3] digits = s[3:] if not digits: digits = '0' if max_bits is not None: if len(digits) < max_bits: digits = (sign[-1] * max_bits + digits)[-max_bits:] return "%s %s" % (sign, digits) def show_flag_values(value): return list(_iter_bits_lsb(value)) try: from types import DynamicClassAttribute base = DynamicClassAttribute except ImportError: base = object DynamicClassAttribute = None class property(base): """ This is a descriptor, used to define attributes that act differently when accessed through an enum member and through an enum class. Instance access is the same as property(), but access to an attribute through the enum class will look in the class' _member_map_. """ # inherit from DynamicClassAttribute if we can in order to get `inspect` # support def __init__(self, fget=None, fset=None, fdel=None, doc=None): self.fget = fget self.fset = fset self.fdel = fdel # next two lines make property act the same as bltin_property self.__doc__ = doc or fget.__doc__ self.overwrite_doc = doc is None # support for abstract methods self.__isabstractmethod__ = bool(getattr(fget, '__isabstractmethod__', False)) # names, if possible def getter(self, fget): fdoc = fget.__doc__ if self.overwrite_doc else None result = type(self)(fget, self.fset, self.fdel, fdoc or self.__doc__) result.overwrite_doc = self.__doc__ is None return result def setter(self, fset): fdoc = fget.__doc__ if self.overwrite_doc else None result = type(self)(self.fget, fset, self.fdel, self.__doc__) result.overwrite_doc = self.__doc__ is None return result def deleter(self, fdel): fdoc = fget.__doc__ if self.overwrite_doc else None result = type(self)(self.fget, self.fset, fdel, self.__doc__) result.overwrite_doc = self.__doc__ is None return result def __repr__(self): member = self.ownerclass._member_map_.get(self.name) func = self.fget or self.fset or self.fdel strings = [] if member: strings.append('%r' % member) if func: strings.append('function=%s' % func.__name__) return 'property(%s)' % ', '.join(strings) def __get__(self, instance, ownerclass=None): if instance is None: try: return ownerclass._member_map_[self.name] except KeyError: raise AttributeError( '%r has no attribute %r' % (ownerclass, self.name) ) else: if self.fget is not None: return self.fget(instance) else: if self.fset is not None: raise AttributeError( 'cannot read attribute %r on %r' % (self.name, ownerclass) ) else: try: return instance.__dict__[self.name] except KeyError: raise AttributeError( '%r member has no attribute %r' % (ownerclass, self.name) ) def __set__(self, instance, value): if self.fset is None: if self.fget is not None: raise AttributeError( "cannot set attribute %r on <aenum %r>" % (self.name, self.clsname) ) else: instance.__dict__[self.name] = value else: return self.fset(instance, value) def __delete__(self, instance): if self.fdel is None: if self.fget or self.fset: raise AttributeError( "cannot delete attribute %r on <aenum %r>" % (self.name, self.clsname) ) elif self.name in instance.__dict__: del instance.__dict__[self.name] else: raise AttributeError( "no attribute %r on <aenum %r> member" % (self.name, self.clsname) ) else: return self.fdel(instance) def __set_name__(self, ownerclass, name): self.name = name self.clsname = ownerclass.__name__ self.ownerclass = ownerclass _RouteClassAttributeToGetattr = property if DynamicClassAttribute is None: DynamicClassAttribute = property # deprecated enum_property = property # more helpers class SentinelType(type): def __repr__(cls): return '<%s>' % cls.__name__ Sentinel = SentinelType('Sentinel', (object, ), {}) def _power_of_two(value): if value < 1: return False return value == 2 ** _high_bit(value) def bits(num): if num in (0, 1): return str(num) negative = False if num < 0: negative = True num = ~num result = bits(num>>1) + str(num&1) if negative: result = '1' + ''.join(['10'[d=='1'] for d in result]) return result def bit_count(num): """ return number of set bits Counting bits set, Brian Kernighan's way* unsigned int v; // count the number of bits set in v unsigned int c; // c accumulates the total bits set in v for (c = 0; v; c++) { v &= v - 1; } //clear the least significant bit set This method goes through as many iterations as there are set bits. So if we have a 32-bit word with only the high bit set, then it will only go once through the loop. * The C Programming Language 2nd Ed., Kernighan & Ritchie, 1988. This works because each subtraction "borrows" from the lowest 1-bit. For example: loop pass 1 loop pass 2 ----------- ----------- 101000 100000 - 1 - 1 = 100111 = 011111 & 101000 & 100000 = 100000 = 0 It is an excellent technique for Python, since the size of the integer need not be determined beforehand. """ count = 0 while(num): num &= num - 1 count += 1 return(count) def bit_len(num): length = 0 while num: length += 1 num >>= 1 return length def is_single_bit(num): """ True if only one bit set in num (should be an int) """ return (num != 0) and (num & (num - 1)) == 0 def _check_auto_args(method): """check if new generate method supports *args and **kwds""" if isinstance(method, staticmethod): method = method.__get__(type) method = getattr(method, 'im_func', method) args, varargs, keywords, defaults = getargspec(method) return varargs is not None and keywords is not None def enumsort(things): """ sorts things by value if all same type; otherwise by name """ if not things: return things sort_type = type(things[0]) if not issubclass(sort_type, tuple): # direct sort or type error if not all((type(v) is sort_type) for v in things[1:]): raise TypeError('cannot sort items of different types') return sorted(things) else: # expecting list of (name, value) tuples sort_type = type(things[0][1]) try: if all((type(v[1]) is sort_type) for v in things[1:]): return sorted(things, key=lambda i: i[1]) else: raise TypeError('try name sort instead') except TypeError: return sorted(things, key=lambda i: i[0]) # Enum # _init_ and value and AddValue # ----------------------------- # by default, when defining a member everything after the = is "the value", everything is # passed to __new__, everything is passed to __init__ # # if _init_ is present then # if `value` is not in _init_, everything is "the value", defaults apply # if `value` is in _init_, only the first thing after the = is the value, and the rest will # be passed to __init__ # if fewer values are present for member assignment than _init_ calls for, _generate_next_value_ # will be called in an attempt to generate them # # if AddValue is present then # _generate_next_value_ is always called, and any generated values are prepended to provided # values (custom _gnv_s can change that) # default _init_ rules apply # Constants used in Enum @export(globals()) class EnumConstants(NamedConstant): AddValue = constant('addvalue', 'prepends value(s) from _generate_next_value_ to each member') MagicValue = constant('magicvalue', 'calls _generate_next_value_ when no arguments are given') MultiValue = constant('multivalue', 'each member can have several values') NoAlias = constant('noalias', 'duplicate valued members are distinct, not aliased') Unique = constant('unique', 'duplicate valued members are not allowed') def __repr__(self): return self._name_ # Dummy value for Enum as EnumType explicity checks for it, but of course until # EnumType finishes running the first time the Enum class doesn't exist. This # is also why there are checks in EnumType like `if Enum is not None`. # # Ditto for Flag. Enum = ReprEnum = IntEnum = StrEnum = Flag = IntFlag = EJECT = KEEP = None class enum(object): """ Helper class to track args, kwds. """ def __init__(self, *args, **kwds): self._args = args self._kwds = dict(kwds.items()) self._hash = hash(args) self.name = None @bltin_property def args(self): return self._args @bltin_property def kwds(self): return self._kwds.copy() def __hash__(self): return self._hash def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented return self.args == other.args and self.kwds == other.kwds def __ne__(self, other): if not isinstance(other, self.__class__): return NotImplemented return self.args != other.args or self.kwds != other.kwds def __repr__(self): final = [] args = ', '.join(['%r' % (a, ) for a in self.args]) if args: final.append(args) kwds = ', '.join([('%s=%r') % (k, v) for k, v in enumsort(list(self.kwds.items()))]) if kwds: final.append(kwds) return '%s(%s)' % (self.__class__.__name__, ', '.join(final)) _auto_null = SentinelType('no_value', (object, ), {}) class auto(enum): """ Instances are replaced with an appropriate value in Enum class suites. """ enum_member = _auto_null _value = _auto_null _operations = [] def __and__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_and_, (self, other))) return new_auto def __rand__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_and_, (other, self))) return new_auto def __invert__(self): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_inv_, (self,))) return new_auto def __or__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_or_, (self, other))) return new_auto def __ror__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_or_, (other, self))) return new_auto def __xor__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_xor_, (self, other))) return new_auto def __rxor__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_xor_, (other, self))) return new_auto def __abs__(self): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_abs_, (self, ))) return new_auto def __add__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_add_, (self, other))) return new_auto def __radd__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_add_, (other, self))) return new_auto def __neg__(self): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_neg_, (self, ))) return new_auto def __pos__(self): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_pos_, (self, ))) return new_auto if PY2: def __div__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_div_, (self, other))) return new_auto def __rdiv__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_div_, (other, self))) return new_auto def __floordiv__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_floordiv_, (self, other))) return new_auto def __rfloordiv__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_floordiv_, (other, self))) return new_auto def __truediv__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_truediv_, (self, other))) return new_auto def __rtruediv__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_truediv_, (other, self))) return new_auto def __lshift__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_lshift_, (self, other))) return new_auto def __rlshift__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_lshift_, (other, self))) return new_auto def __rshift__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_rshift_, (self, other))) return new_auto def __rrshift__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_rshift_, (other, self))) return new_auto def __mod__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_mod_, (self, other))) return new_auto def __rmod__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_mod_, (other, self))) return new_auto def __mul__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_mul_, (self, other))) return new_auto def __rmul__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_mul_, (other, self))) return new_auto def __pow__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_pow_, (self, other))) return new_auto def __rpow__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_pow_, (other, self))) return new_auto def __sub__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_sub_, (self, other))) return new_auto def __rsub__(self, other): new_auto = self.__class__() new_auto._operations = self._operations[:] new_auto._operations.append((_sub_, (other, self))) return new_auto def __repr__(self): if self._operations: return 'auto(...)' else: return 'auto(%r, *%r, **%r)' % (self._value, self._args, self._kwds) @bltin_property def value(self): if self._value is not _auto_null and self._operations: raise TypeError('auto() object out of sync') elif self._value is _auto_null and not self._operations: return self._value elif self._value is not _auto_null: return self._value else: return self._resolve() @value.setter def value(self, value): if self._operations: value = self._resolve(value) self._value = value def _resolve(self, base_value=None): cls = self.__class__ for op, params in self._operations: values = [] for param in params: if isinstance(param, cls): if param.value is _auto_null: if base_value is None: return _auto_null else: values.append(base_value) else: values.append(param.value) else: values.append(param) value = op(*values) self._operations[:] = [] self._value = value return value from . import _common _common.property = property _common.auto = auto del _common class _EnumArgSpec(NamedTuple): args = 0, 'all args except *args and **kwds' varargs = 1, 'the name of the *args variable' keywords = 2, 'the name of the **kwds variable' defaults = 3, 'any default values' required = 4, 'number of required values (no default available)' def __new__(cls, _new_func): argspec = getargspec(_new_func) args, varargs, keywords, defaults = argspec if defaults: reqs = args[1:-len(defaults)] else: reqs = args[1:] return tuple.__new__(_EnumArgSpec, (args, varargs, keywords, defaults, reqs)) class _proto_member: """ intermediate step for enum members between class execution and final creation """ def __init__(self, value): self.value = value def __set_name__(self, enum_class, member_name): """ convert each quasi-member into an instance of the new enum class """ # first step: remove ourself from enum_class delattr(enum_class, member_name) # second step: create member based on enum_class value = self.value kwds = {} args = () init_args = () extra_mv_args = () multivalue = None if isinstance(value, tuple) and value and isinstance(value[0], auto): multivalue = value value = value[0] if isinstance(value, auto) and value.value is _auto_null: args = value.args kwds = value.kwds elif isinstance(value, auto): kwds = value.kwds args = (value.value, ) + value.args value = value.value elif isinstance(value, enum): args = value.args kwds = value.kwds elif isinstance(value, Member): value = value.value args = (value, ) elif not isinstance(value, tuple): args = (value, ) else: args = value if multivalue is not None: value = (value, ) + multivalue[1:] kwds = {} args = value del multivalue # possibilities # # - no init, multivalue -> __new__[0], __init__(*[:]), extra=[1:] # - init w/o value, multivalue -> __new__[0], __init__(*[:]), extra=[1:] # # - init w/value, multivalue -> __new__[0], __init__(*[1:]), extra=[1:] # # - init w/value, no multivalue -> __new__[0], __init__(*[1:]), extra=[] # # - init w/o value, no multivalue -> __new__[:], __init__(*[:]), extra=[] # - no init, no multivalue -> __new__[:], __init__(*[:]), extra=[] if enum_class._multivalue_ or 'value' in enum_class._creating_init_: if enum_class._multivalue_: # when multivalue is True, creating_init can be anything mv_arg = args[0] extra_mv_args = args[1:] if 'value' in enum_class._creating_init_: init_args = args[1:] else: init_args = args args = args[0:1] value = args[0] else: # 'value' is definitely in creating_init if enum_class._auto_init_ and enum_class._new_args_: # we have a custom __new__ and an auto __init__ # divvy up according to number of params in each init_args = args[-len(enum_class._creating_init_)+1:] if not enum_class._auto_args_: args = args[:len(enum_class._new_args_.args)] value = args[0] elif enum_class._auto_init_: # don't pass in value init_args = args[1:] args = args[0:1] value = args[0] elif enum_class._new_args_: # do not modify args value = args[0] else: # keep all args for user-defined __init__ # keep value as-is init_args = args else: # either no creating_init, or it doesn't have 'value' init_args = args if enum_class._member_type_ is tuple: # special case for tuple enums args = (args, ) # wrap it one more time if not enum_class._use_args_: enum_member = enum_class._new_member_(enum_class) else: enum_member = enum_class._new_member_(enum_class, *args, **kwds) if not hasattr(enum_member, '_value_'): if enum_class._member_type_ is object: enum_member._value_ = value else: try: enum_member._value_ = enum_class._member_type_(*args, **kwds) except Exception as exc: te = TypeError('_value_ not set in __new__, unable to create it') te.__cause__ = exc raise te value = enum_member._value_ enum_member._name_ = member_name enum_member.__objclass__ = enum_class enum_member.__init__(*init_args, **kwds) enum_member._sort_order_ = len(enum_class._member_names_) if Flag is not None and issubclass(enum_class, Flag): enum_class._flag_mask_ |= value if is_single_bit(value): enum_class._singles_mask_ |= value enum_class._all_bits_ = 2 ** ((enum_class._flag_mask_).bit_length()) - 1 # If another member with the same value was already defined, the # new member becomes an alias to the existing one. if enum_class._noalias_: # unless NoAlias was specified enum_class._member_names_.append(member_name) else: nonunique = defaultdict(list) try: try: # try to do a fast lookup to avoid the quadratic loop enum_member = enum_class._value2member_map_[value] if enum_class._unique_: nonunique[enum_member.name].append(member_name) except TypeError: # unhashable members are stored elsewhere for unhashable_value, canonical_member in enum_class._value2member_seq_: name = canonical_member.name if unhashable_value == enum_member._value_: if enum_class._unique_: nonunique[name].append(member_name) enum_member = canonical_member break else: raise KeyError except KeyError: # this could still be an alias if the value is multi-bit and the # class is a flag class if ( Flag is None or not issubclass(enum_class, Flag) ): # no other instances found, record this member in _member_names_ enum_class._member_names_.append(member_name) elif ( Flag is not None and issubclass(enum_class, Flag) and is_single_bit(value) ): # no other instances found, record this member in _member_names_ enum_class._member_names_.append(member_name) if nonunique: # duplicates not allowed if Unique specified message = [] for name, aliases in nonunique.items(): bad_aliases = ','.join(aliases) message.append('%s --> %s [%r]' % (name, bad_aliases, enum_class[name].value)) raise ValueError( '%s: duplicate names found: %s' % (enum_class.__name__, '; '.join(message)) ) # if self.value is an `auto()`, replace the value attribute with the new enum member if isinstance(self.value, auto): self.value.enum_member = enum_member # if necessary, get redirect in place and then add it to _member_map_ found_descriptor = None descriptor_type = None class_type = None for base in enum_class.__mro__[1:]: attr = base.__dict__.get(member_name) if attr is not None: if isinstance(attr, (property, DynamicClassAttribute)): found_descriptor = attr class_type = base descriptor_type = 'enum' break elif is_descriptor(attr): found_descriptor = attr descriptor_type = descriptor_type or 'desc' class_type = class_type or base continue else: descriptor_type = 'attr' class_type = base if found_descriptor: redirect = property() redirect.member = enum_member redirect.__set_name__(enum_class, member_name) if descriptor_type in ('enum','desc'): # earlier descriptor found; copy fget, fset, fdel to this one. redirect.fget = getattr(found_descriptor, 'fget', None) redirect._get = getattr(found_descriptor, '__get__', None) redirect.fset = getattr(found_descriptor, 'fset', None) redirect._set = getattr(found_descriptor, '__set__', None) redirect.fdel = getattr(found_descriptor, 'fdel', None) redirect._del = getattr(found_descriptor, '__delete__', None) redirect._attr_type = descriptor_type redirect._cls_type = class_type setattr(enum_class, member_name, redirect) else: setattr(enum_class, member_name, enum_member) # now add to _member_map_ (even aliases) enum_class._member_map_[member_name] = enum_member # # process (possible) MultiValues values = (value, ) + extra_mv_args if enum_class._multivalue_ and mv_arg not in values: values += (mv_arg, ) enum_member._values_ = values for value in values: # first check if value has already been used if enum_class._multivalue_ and ( value in enum_class._value2member_map_ or any(v == value for (v, m) in enum_class._value2member_seq_) ): raise ValueError('%r has already been used' % (value, )) try: # This may fail if value is not hashable. We can't add the value # to the map, and by-value lookups for this value will be # linear. if enum_class._noalias_: raise TypeError('cannot use dict to store value') enum_class._value2member_map_[value] = enum_member except TypeError: enum_class._value2member_seq_ += ((value, enum_member), ) class EnumDict(dict): """Track enum member order and ensure member names are not reused. EnumType will use the names found in self._member_names as the enumeration member names. """ def __init__(self, cls_name, settings, start, constructor_init, constructor_start, constructor_boundary): super(EnumDict, self).__init__() self._cls_name = cls_name self._constructor_init = constructor_init self._constructor_start = constructor_start self._constructor_boundary = constructor_boundary self._generate_next_value = None self._member_names = [] self._member_names_set = set() self._settings = settings self._addvalue = addvalue = AddValue in settings self._magicvalue = MagicValue in settings self._multivalue = MultiValue in settings if self._addvalue and self._magicvalue: raise TypeError('%r: AddValue and MagicValue are mutually exclusive' % cls_name) if self._multivalue and self._magicvalue: raise TypeError('%r: MultiValue and MagicValue are mutually exclusive' % cls_name) self._start = start self._addvalue_value = start self._new_args = () self._auto_args = False # when the magic turns off self._locked = MagicValue not in settings # if init fields are specified self._init = [] # list of temporary names self._ignore = [] if self._magicvalue: self._ignore = ['property', 'staticmethod', 'classmethod'] self._ignore_init_done = False # if _sunder_ values can be changed via the class body self._allow_init = True self._last_values = [] self._auto_called = False def __getitem__(self, key): if key == self._cls_name and self._cls_name not in self: return enum elif ( self._locked or key in self or key in self._ignore or is_sunder(key) or is_dunder(key) ): return super(EnumDict, self).__getitem__(key) elif self._magicvalue: value = self._generate_next_value(key, self._start, len(self._member_names), self._last_values[:]) self.__setitem__(key, value) return value else: raise Exception('Magic is not set -- why am I here?') def __setitem__(self, key, value): """Changes anything not sundured, dundered, nor a descriptor. If an enum member name is used twice, an error is raised; duplicate values are not checked for. Single underscore (sunder) names are reserved. """ # Flag classes that have MagicValue and __new__ will get a generated _gnv_ # # if auto() is used in a tuple, auto_store becomes False auto_store = True if is_internal_class(self._cls_name, value): pass elif is_private_name(self._cls_name, key): pass elif is_sunder(key): if key not in ( '_init_', '_settings_', '_order_', '_ignore_', '_start_', '_create_pseudo_member_', '_create_pseudo_member_values_', '_generate_next_value_', '_boundary_', '_numeric_repr_', '_missing_', '_missing_value_', '_missing_name_', '_iter_member_', '_iter_member_by_value_', '_iter_member_by_def_', ): raise ValueError('%r: _sunder_ names, such as %r, are reserved for future Enum use' % (self._cls_name, key) ) elif not self._allow_init and key not in ( 'create_pseudo_member_', '_missing_', '_missing_value_', '_missing_name_', ): # sunder is used during creation, must be specified first raise ValueError('%r: cannot set %r after init phase' % (self._cls_name, key)) elif key == '_ignore_': if self._ignore_init_done: raise TypeError('%r: ignore can only be specified once' % self._cls_name) if isinstance(value, basestring): value = value.split() else: value = list(value) self._ignore = value already = set(value) & self._member_names_set if already: raise ValueError('%r: _ignore_ cannot specify already set names %s' % ( self._cls_name, ', '.join(repr(a) for a in already) )) self._ignore_init_done = True elif key == '_boundary_': if self._constructor_boundary: raise TypeError('%r: boundary specified in constructor and class body' % self._cls_name) elif key == '_start_': if self._constructor_start: raise TypeError('%r: start specified in constructor and class body' % self._cls_name) self._start = value elif key == '_settings_': if not isinstance(value, (set, tuple)): value = (value, ) if not isinstance(value, set): value = set(value) self._settings |= value if NoAlias in value and Unique in value: raise TypeError('%r: NoAlias and Unique are mutually exclusive' % self._cls_name) elif MultiValue in value and NoAlias in value: raise TypeError('cannot specify both MultiValue and NoAlias' % self._cls_name) allowed_settings = dict.fromkeys(['addvalue', 'magicvalue', 'noalias', 'unique', 'multivalue']) for arg in self._settings: if arg not in allowed_settings: raise TypeError('%r: unknown qualifier %r (from %r)' % (self._cls_name, arg, value)) allowed_settings[arg] = True self._multivalue = allowed_settings['multivalue'] self._addvalue = allowed_settings['addvalue'] self._magicvalue = allowed_settings['magicvalue'] self._locked = not self._magicvalue if self._magicvalue and not self._ignore_init_done: self._ignore = ['property', 'classmethod', 'staticmethod'] if self._addvalue and self._init and 'value' not in self._init: self._init.insert(0, 'value') value = tuple(self._settings) elif key == '_init_': if self._constructor_init: raise TypeError('%r: init specified in constructor and in class body' % self._cls_name) _init_ = value if isinstance(_init_, basestring): _init_ = _init_.replace(',',' ').split() if self._addvalue and 'value' not in self._init: self._init.insert(0, 'value') if self._magicvalue: raise TypeError("%r: _init_ and MagicValue are mutually exclusive" % self._cls_name) self._init = _init_ value = _init_ elif key == '_generate_next_value_': # check if members already defined as auto() if self._auto_called: raise TypeError("_generate_next_value_ must be defined before members") gnv = value if value is not None: if isinstance(value, staticmethod): gnv = value.__func__ elif isinstance(value, classmethod): raise TypeError('%r: _generate_next_value must be a staticmethod, not a classmethod' % self._cls_name) else: gnv = value value = staticmethod(value) self._auto_args = _check_auto_args(value) setattr(self, '_generate_next_value', gnv) elif is_dunder(key): if key == '__order__': key = '_order_' if not self._allow_init: # _order_ is used during creation, must be specified first raise ValueError('%r: cannot set %r after init phase' % (self._cls_name, key)) elif key == '__new__': # and self._new_to_init: if isinstance(value, staticmethod): value = value.__func__ self._new_args = _EnumArgSpec(value) elif key == '__init_subclass__': if not isinstance(value, classmethod): value = classmethod(value) if is_descriptor(value): self._locked = True elif key in self._member_names_set: # descriptor overwriting an enum? raise TypeError('%r: attempt to reuse name: %r' % (self._cls_name, key)) elif key in self._ignore: pass elif not is_descriptor(value): self._allow_init = False if key in self: # enum overwriting a descriptor? raise TypeError('%r: %s already defined as %r' % (self._cls_name, key, self[key])) if type(value) is enum: value.name = key if self._addvalue: raise TypeError('%r: enum() and AddValue are incompatible' % self._cls_name) elif self._addvalue and not self._multivalue: # generate a value value = self._gnv(key, value) elif self._multivalue: # make sure it's a tuple if not type(value) is tuple: value = (value, ) if isinstance(value[0], auto): value = (self._convert_auto(key, value[0]), ) + value[1:] if self._addvalue: value = self._gnv(key, value) elif isinstance(value, auto): value = self._convert_auto(key, value) elif type(value) is tuple and any(isinstance(v, auto) for v in value): # insist on an actual tuple, no subclasses, in keeping with only supporting # top-level auto() usage (not contained in any other data structure) auto_valued = [] for v in value: if isinstance(v, auto): auto_store = False v = self._convert_auto(key, v) v = v.value self._last_values.append(v) auto_valued.append(v) value = tuple(auto_valued) elif not isinstance(value, auto): # call generate maybe if # - init is specified; or # - __new__ is specified; # and either of them call for more values than are present new_args = () or self._new_args and self._new_args.required target_len = len(self._init or new_args) if isinstance(value, tuple): source_len = len(value) else: source_len = 1 multi_args = len(self._init) > 1 or new_args if source_len < target_len : value = self._gnv(key, value) else: pass if self._init: if isinstance(value, auto): test_value = value.args elif not isinstance(value, tuple): test_value = (value, ) else: test_value = value if len(self._init) != len(test_value): raise TypeError( '%s.%s: number of fields provided do not match init [%r != %r]' % (self._cls_name, key, self._init, test_value) ) self._member_names.append(key) self._member_names_set.add(key) else: # not a new member, turn off the autoassign magic self._locked = True self._allow_init = False if not (is_sunder(key) or is_dunder(key) or is_private_name(self._cls_name, key) or is_descriptor(value)): if not auto_store: # reset for next pass auto_store = True elif isinstance(value, auto): self._last_values.append(value.value) elif type(value) is tuple: if value: if isinstance(value[0], auto): self._last_values.append(value[0].value) else: self._last_values.append(value[0]) else: self._last_values.append(value) super(EnumDict, self).__setitem__(key, value) def _convert_auto(self, key, value): # if auto.args or auto.kwds, compare to _init_ and __new__ -- if lacking, call gnv # if not auto.args|kwds but auto.value is _auto_null -- call gnv if value.args or value.kwds or value.value is _auto_null: if value.args or value.kwds: values = value.args else: values = () new_args = () or self._new_args and self._new_args.required target_len = len(self._init or new_args) or 1 if type(values) is tuple: source_len = len(values) else: source_len = 1 multi_args = len(self._init) > 1 or new_args if source_len < target_len : values = self._gnv(key, values) self._auto_called = True if value.args: value._args = values else: value.value = values return value def _gnv(self, key, value): # generate a value if self._auto_args: if not isinstance(value, tuple): value = (value, ) value = self._generate_next_value(key, self._start, len(self._member_names), self._last_values[:], *value) else: value = self._generate_next_value(key, self._start, len(self._member_names), self._last_values[:]) if isinstance(value, tuple) and len(value) == 1: value = value[0] return value no_arg = SentinelType('no_arg', (type, ), {}) class EnumType(type): """Metaclass for Enum""" @classmethod def __prepare__(metacls, cls, bases, init=None, start=None, settings=(), boundary=None, **kwds): metacls._check_for_existing_members_(cls, bases) if Flag is None and cls == 'Flag': initial_flag = True else: initial_flag = False # settings are a combination of current and all past settings constructor_init = init is not None constructor_start = start is not None constructor_boundary = boundary is not None if not isinstance(settings, tuple): settings = settings, settings = set(settings) generate = None order = None # inherit previous flags member_type, first_enum = metacls._get_mixins_(cls, bases) if first_enum is not None: generate = getattr(first_enum, '_generate_next_value_', None) generate = getattr(generate, 'im_func', generate) settings |= metacls._get_settings_(bases) init = init or first_enum._auto_init_[:] order = first_enum._order_function_ if start is None: start = first_enum._start_ else: # first time through -- creating Enum itself start = 1 # check for custom settings if AddValue in settings and init and 'value' not in init: if isinstance(init, list): init.insert(0, 'value') else: init = 'value ' + init if NoAlias in settings and Unique in settings: raise TypeError('%r: NoAlias and Unique are mutually exclusive' % cls) if MultiValue in settings and NoAlias in settings: raise TypeError('%r: MultiValue and NoAlias are mutually exclusive' % cls) allowed_settings = dict.fromkeys(['addvalue', 'magicvalue', 'noalias', 'unique', 'multivalue']) for arg in settings: if arg not in allowed_settings: raise TypeError('%r: unknown qualifier %r' % (cls, arg)) enum_dict = EnumDict(cls_name=cls, settings=settings, start=start, constructor_init=constructor_init, constructor_start=constructor_start, constructor_boundary=constructor_boundary) enum_dict._member_type = member_type enum_dict._base_type = ('enum', 'flag')[ Flag is None and cls == 'Flag' or Flag is not None and any(issubclass(b, Flag) for b in bases) ] if Flag is not None and any(b is Flag for b in bases) and member_type not in (baseinteger + (object, )): if Flag in bases: # when a non-int data type is mixed in with Flag, we end up # needing two values for two `__new__`s: # - the integer value for the Flag itself; and # - the mix-in value for the mix-in # # we provide a default `_generate_next_value_` to supply the int # argument, and a default `__new__` to keep the two straight def _generate_next_value_(name, start, count, values, *args, **kwds): return (2 ** count, ) + args enum_dict['_generate_next_value_'] = staticmethod(_generate_next_value_) def __new__(cls, flag_value, type_value): obj = member_type.__new__(cls, type_value) obj._value_ = flag_value return obj enum_dict['__new__'] = __new__ else: try: enum_dict._new_args = _EnumArgSpec(first_enum.__new_member__) except TypeError: pass elif not initial_flag: if hasattr(first_enum, '__new_member__'): enum_dict._new_args = _EnumArgSpec(first_enum.__new_member__) if generate: enum_dict['_generate_next_value_'] = generate enum_dict._inherited_gnv = True if init is not None: if isinstance(init, basestring): init = init.replace(',',' ').split() enum_dict._init = init elif hasattr(first_enum, '__new_member__'): enum_dict._new_args = _EnumArgSpec(first_enum.__new_member__) if order is not None: enum_dict['_order_'] = staticmethod(order) return enum_dict def __init__(cls, *args , **kwds): pass def __new__(metacls, cls, bases, clsdict, init=None, start=None, settings=(), boundary=None, **kwds): # handle py2 case first if type(clsdict) is not EnumDict: # py2 and/or functional API gyrations init = clsdict.pop('_init_', None) start = clsdict.pop('_start_', None) settings = clsdict.pop('_settings_', ()) _order_ = clsdict.pop('_order_', clsdict.pop('__order__', None)) _ignore_ = clsdict.pop('_ignore_', None) _create_pseudo_member_ = clsdict.pop('_create_pseudo_member_', None) _create_pseudo_member_values_ = clsdict.pop('_create_pseudo_member_values_', None) _generate_next_value_ = clsdict.pop('_generate_next_value_', None) _missing_ = clsdict.pop('_missing_', None) _missing_value_ = clsdict.pop('_missing_value_', None) _missing_name_ = clsdict.pop('_missing_name_', None) _boundary_ = clsdict.pop('_boundary_', None) _iter_member_ = clsdict.pop('_iter_member_', None) _iter_member_by_value_ = clsdict.pop('_iter_member_by_value_', None) _iter_member_by_def_ = clsdict.pop('_iter_member_by_def_', None) __new__ = clsdict.pop('__new__', None) __new__ = getattr(__new__, 'im_func', __new__) __new__ = getattr(__new__, '__func__', __new__) enum_members = dict([ (k, v) for (k, v) in clsdict.items() if not (is_sunder(k) or is_dunder(k) or is_private_name(cls, k) or is_descriptor(v)) ]) original_dict = clsdict clsdict = metacls.__prepare__(cls, bases, init=init, start=start) if settings: clsdict['_settings_'] = settings init = init or clsdict._init if _order_ is None: _order_ = clsdict.get('_order_') if _order_ is not None: _order_ = _order_.__get__(cls) if isinstance(original_dict, OrderedDict): calced_order = original_dict elif _order_ is None: calced_order = [name for (name, value) in enumsort(list(enum_members.items()))] elif isinstance(_order_, basestring): calced_order = _order_ = _order_.replace(',', ' ').split() elif callable(_order_): if init: if not isinstance(init, basestring): init = ' '.join(init) member = NamedTuple('member', init and 'name ' + init or ['name', 'value']) calced_order = [] for name, value in enum_members.items(): if init: if not isinstance(value, tuple): value = (value, ) name_value = (name, ) + value else: name_value = tuple((name, value)) if member._defined_len_ != len(name_value): raise TypeError('%d values expected (%s), %d received (%s)' % ( member._defined_len_, ', '.join(member._fields_), len(name_value), ', '.join([repr(v) for v in name_value]), )) calced_order.append(member(*name_value)) calced_order = [m.name for m in sorted(calced_order, key=_order_)] else: calced_order = _order_ for name in ( '_missing_', '_missing_value_', '_missing_name_', '_ignore_', '_create_pseudo_member_', '_create_pseudo_member_values_', '_generate_next_value_', '_order_', '__new__', '_missing_', '_missing_value_', '_missing_name_', '_boundary_', '_iter_member_', '_iter_member_by_value_', '_iter_member_by_def_', ): attr = locals()[name] if attr is not None: clsdict[name] = attr # now add members for k in calced_order: try: clsdict[k] = original_dict[k] except KeyError: # this error will be handled when _order_ is checked pass for k, v in original_dict.items(): if k not in calced_order: clsdict[k] = v del _order_, _ignore_, _create_pseudo_member_, _create_pseudo_member_values_, del _generate_next_value_, _missing_, _missing_value_, _missing_name_ # # resume normal path clsdict._locked = True # # check for illegal enum names (any others?) member_names = clsdict._member_names invalid_names = set(member_names) & set(['mro', '']) if invalid_names: raise ValueError('invalid enum member name(s): %s' % ( ', '.join(invalid_names), )) _order_ = clsdict.pop('_order_', None) if isinstance(_order_, basestring): _order_ = _order_.replace(',',' ').split() init = clsdict._init start = clsdict._start settings = clsdict._settings creating_init = [] new_args = clsdict._new_args auto_args = clsdict._auto_args auto_init = False if init is not None: auto_init = True creating_init = init[:] if 'value' in creating_init and creating_init[0] != 'value': raise TypeError("'value', if specified, must be the first item in 'init'") magicvalue = MagicValue in settings multivalue = MultiValue in settings noalias = NoAlias in settings unique = Unique in settings # an Enum class cannot be mixed with other types (int, float, etc.) if # it has an inherited __new__ unless a new __new__ is defined (or # the resulting class will fail). # an Enum class is final once enumeration items have been defined; # # remove any keys listed in _ignore_ clsdict.setdefault('_ignore_', []).append('_ignore_') ignore = clsdict['_ignore_'] for key in ignore: clsdict.pop(key, None) # boundary = boundary or clsdict.pop('_boundary_', None) _gnv = clsdict.get('_generate_next_value_') if _gnv is not None and type(_gnv) is not staticmethod: _gnv = staticmethod(_gnv) # convert to regular dict clsdict = dict(clsdict.items()) if _gnv is not None: clsdict['_generate_next_value_'] = _gnv member_type, first_enum = metacls._get_mixins_(cls, bases) # get the method to create enum members __new__, save_new, new_uses_args = metacls._find_new_( clsdict, member_type, first_enum, ) clsdict['_new_member_'] = staticmethod(__new__) clsdict['_use_args_'] = new_uses_args # # convert future enum members into temporary _proto_members for name in member_names: value = clsdict[name] clsdict[name] = _proto_member(value) # # temp stuff clsdict['_creating_init_'] = creating_init clsdict['_multivalue_'] = multivalue clsdict['_magicvalue_'] = magicvalue clsdict['_noalias_'] = noalias clsdict['_unique_'] = unique # # house-keeping structures clsdict['_member_names_'] = [] clsdict['_member_map_'] = OrderedDict() clsdict['_member_type_'] = member_type clsdict['_value2member_map_'] = {} clsdict['_value2member_seq_'] = () clsdict['_settings_'] = settings clsdict['_start_'] = start clsdict['_auto_init_'] = init clsdict['_new_args_'] = new_args clsdict['_auto_args_'] = auto_args clsdict['_order_function_'] = None # now set the __repr__ for the value clsdict['_value_repr_'] = metacls._find_data_repr_(cls, bases) # # Flag structures (will be removed if final class is not a Flag clsdict['_boundary_'] = ( boundary or getattr(first_enum, '_boundary_', None) ) clsdict['_flag_mask_'] = 0 clsdict['_singles_mask_'] = 0 clsdict['_all_bits_'] = 0 clsdict['_inverted_'] = None # # move skipped values out of the descriptor for name, obj in clsdict.items(): if isinstance(obj, nonmember): clsdict[name] = obj.value # # If a custom type is mixed into the Enum, and it does not know how # to pickle itself, pickle.dumps will succeed but pickle.loads will # fail. Rather than have the error show up later and possibly far # from the source, sabotage the pickle protocol for this class so # that pickle.dumps also fails. # # However, if the new class implements its own __reduce_ex__, do not # sabotage -- it's on them to make sure it works correctly. We use # __reduce_ex__ instead of any of the others as it is preferred by # pickle over __reduce__, and it handles all pickle protocols. unpicklable = False if '__reduce_ex__' not in clsdict: if member_type is not object: methods = ('__getnewargs_ex__', '__getnewargs__', '__reduce_ex__', '__reduce__') if not any(m in member_type.__dict__ for m in methods): make_class_unpicklable(clsdict) unpicklable = True # # create a default docstring if one has not been provided if '__doc__' not in clsdict: clsdict['__doc__'] = 'An enumeration.' # # create our new Enum type try: exc = None enum_class = type.__new__(metacls, cls, bases, clsdict) except RuntimeError as e: # any exceptions raised by _proto_member (aka member.__new__) will get converted to # a RuntimeError, so get that original exception back and raise # it instead exc = e.__cause__ or e if exc is not None: raise exc # # if Python 3.5 or ealier, implement the __set_name__ and # __init_subclass__ protocols if pyver < PY3_6: for name in member_names: enum_class.__dict__[name].__set_name__(enum_class, name) for name, obj in enum_class.__dict__.items(): if name in member_names: continue if hasattr(obj, '__set_name__'): obj.__set_name__(enum_class, name) if Enum is not None and hasattr(enum_class, '__init_subclass__'): super(enum_class, enum_class).__init_subclass__() # # double check that repr and friends are not the mixin's or various # things break (such as pickle) # # Also, special handling for ReprEnum if ReprEnum is not None and ReprEnum in bases: if member_type is object: raise TypeError( 'ReprEnum subclasses must be mixed with a data type (i.e.' ' int, str, float, etc.)' ) if '__format__' not in clsdict: enum_class.__format__ = member_type.__format__ clsdict['__format__'] = enum_class.__format__ if '__str__' not in clsdict: method = member_type.__str__ if method is object.__str__: # if member_type does not define __str__, object.__str__ will use # its __repr__ instead, so we'll also use its __repr__ method = member_type.__repr__ enum_class.__str__ = method clsdict['__str__'] = enum_class.__str__ for name in ('__repr__', '__str__', '__format__', '__reduce_ex__'): if name in clsdict: # class has defined/imported/copied the method continue class_method = getattr(enum_class, name) obj_method = getattr(member_type, name, None) enum_method = getattr(first_enum, name, None) if obj_method is not None and obj_method == class_method: if name == '__reduce_ex__' and unpicklable: continue setattr(enum_class, name, enum_method) clsdict[name] = enum_method # # for Flag, add __or__, __and__, __xor__, and __invert__ if Flag is not None and issubclass(enum_class, Flag): for name in ( '__or__', '__and__', '__xor__', '__ror__', '__rand__', '__rxor__', '__invert__' ): if name not in clsdict: setattr(enum_class, name, getattr(Flag, name)) clsdict[name] = enum_method # # method resolution and int's are not playing nice # Python's less than 2.6 use __cmp__ if pyver < PY2_6: # if issubclass(enum_class, int): setattr(enum_class, '__cmp__', getattr(int, '__cmp__')) # elif PY2: # if issubclass(enum_class, int): for method in ( '__le__', '__lt__', '__gt__', '__ge__', '__eq__', '__ne__', '__hash__', ): setattr(enum_class, method, getattr(int, method)) # # replace any other __new__ with our own (as long as Enum is not None, # anyway) -- again, this is to support pickle if Enum is not None: # if the user defined their own __new__, save it before it gets # clobbered in case they subclass later if save_new: setattr(enum_class, '__new_member__', enum_class.__dict__['__new__']) setattr(enum_class, '__new__', Enum.__dict__['__new__']) # # _order_ checking is spread out into three/four steps # - ensure _order_ is a list, not a string nor a function # - if enum_class is a Flag: # - remove any non-single-bit flags from _order_ # - remove any aliases from _order_ # - check that _order_ and _member_names_ match # # _order_ step 1: ensure _order_ is a list if _order_: if isinstance(_order_, staticmethod): _order_ = _order_.__func__ if callable(_order_): # save order for future subclasses enum_class._order_function_ = staticmethod(_order_) # create ordered list for comparison _order_ = [m.name for m in sorted(enum_class, key=_order_)] # # remove Flag structures if final class is not a Flag if ( Flag is None and cls != 'Flag' or Flag is not None and not issubclass(enum_class, Flag) ): delattr(enum_class, '_boundary_') delattr(enum_class, '_flag_mask_') delattr(enum_class, '_singles_mask_') delattr(enum_class, '_all_bits_') delattr(enum_class, '_inverted_') elif Flag is not None and issubclass(enum_class, Flag): # set correct __iter__ if [m._value_ for m in enum_class] != sorted([m._value_ for m in enum_class]): enum_class._iter_member_ = enum_class._iter_member_by_def_ if _order_: # _order_ step 2: remove any items from _order_ that are not single-bit _order_ = [ o for o in _order_ if o not in enum_class._member_map_ or is_single_bit(enum_class[o]._value_) ] # # check for constants with auto() values for k, v in enum_class.__dict__.items(): if isinstance(v, constant) and isinstance(v.value, auto): v.value = enum_class(v.value.value) # if _order_: # _order_ step 3: remove aliases from _order_ _order_ = [ o for o in _order_ if ( o not in enum_class._member_map_ or (o in enum_class._member_map_ and o in enum_class._member_names_) )] # _order_ step 4: verify that _order_ and _member_names_ match if _order_ != enum_class._member_names_: raise TypeError( 'member order does not match _order_:\n%r\n%r' % (enum_class._member_names_, _order_) ) return enum_class def __bool__(cls): """ classes/types should always be True. """ return True def __call__(cls, value=no_arg, names=None, module=None, qualname=None, type=None, start=1, boundary=None): """Either returns an existing member, or creates a new enum class. This method is used both when an enum class is given a value to match to an enumeration member (i.e. Color(3)) and for the functional API (i.e. Color = Enum('Color', names='red green blue')). When used for the functional API: `module`, if set, will be stored in the new class' __module__ attribute; `type`, if set, will be mixed in as the first base class. Note: if `module` is not set this routine will attempt to discover the calling module by walking the frame stack; if this is unsuccessful the resulting class will not be pickleable. """ if names is None: # simple value lookup return cls.__new__(cls, value) # otherwise, functional API: we're creating a new Enum type return cls._create_(value, names, module=module, qualname=qualname, type=type, start=start, boundary=boundary) def __contains__(cls, value): """Return True if `value` is in `cls`. `value` is in `cls` if: 1) `value` is a member of `cls`, or 2) `value` is the value of one of the `cls`'s members. """ if isinstance(value, cls): return True try: return value in cls._value2member_map_ except TypeError: return value in [v for v,m in cls._value2member_seq_] def __delattr__(cls, attr): # nicer error message when someone tries to delete an attribute # (see issue19025). if attr in cls._member_map_: raise AttributeError( "%s: cannot delete Enum member %r." % (cls.__name__, attr), ) found_attr = get_attr_from_chain(cls, attr) if isinstance(found_attr, constant): raise AttributeError( "%s: cannot delete constant %r" % (cls.__name__, attr), ) elif isinstance(found_attr, property): raise AttributeError( "%s: cannot delete property %r" % (cls.__name__, attr), ) type.__delattr__(cls, attr) def __dir__(cls): interesting = set(cls._member_names_ + [ '__class__', '__contains__', '__doc__', '__getitem__', '__iter__', '__len__', '__members__', '__module__', '__name__', ]) if cls._new_member_ is not object.__new__: interesting.add('__new__') if cls.__init_subclass__ is not Enum.__init_subclass__: interesting.add('__init_subclass__') if hasattr(object, '__qualname__'): interesting.add('__qualname__') for method in ('__init__', '__format__', '__repr__', '__str__'): if getattr(cls, method) not in (getattr(Enum, method), getattr(Flag, method)): interesting.add(method) if cls._member_type_ is object: return sorted(interesting) else: # return whatever mixed-in data type has return sorted(set(dir(cls._member_type_)) | interesting) @bltin_property def __members__(cls): """Returns a mapping of member name->value. This mapping lists all enum members, including aliases. Note that this is a copy of the internal mapping. """ return cls._member_map_.copy() def __getitem__(cls, name): try: return cls._member_map_[name] except KeyError: exc = _sys.exc_info()[1] if Flag is not None and issubclass(cls, Flag) and '|' in name: try: # may be an __or__ed name result = cls(0) for n in name.split('|'): result |= cls[n] return result except KeyError: raise exc result = cls._missing_name_(name) if isinstance(result, cls): return result else: raise exc def __iter__(cls): return (cls._member_map_[name] for name in cls._member_names_) def __reversed__(cls): return (cls._member_map_[name] for name in reversed(cls._member_names_)) def __len__(cls): return len(cls._member_names_) __nonzero__ = __bool__ def __repr__(cls): return "<aenum %r>" % (cls.__name__, ) def __setattr__(cls, name, value): """Block attempts to reassign Enum members/constants. A simple assignment to the class namespace only changes one of the several possible ways to get an Enum member from the Enum class, resulting in an inconsistent Enumeration. """ member_map = cls.__dict__.get('_member_map_', {}) if name in member_map: raise AttributeError( '%s: cannot rebind member %r.' % (cls.__name__, name), ) found_attr = get_attr_from_chain(cls, name) if isinstance(found_attr, constant): raise AttributeError( "%s: cannot rebind constant %r" % (cls.__name__, name), ) elif isinstance(found_attr, (bltin_property, property)) and not isinstance(value, property): raise AttributeError( "%s: cannot rebind property %r" % (cls.__name__, name), ) type.__setattr__(cls, name, value) def _convert(cls, *args, **kwds): import warnings warnings.warn("_convert is deprecated and will be removed, use" " _convert_ instead.", DeprecationWarning, stacklevel=2) return cls._convert_(*args, **kwds) def _convert_(cls, name, module, filter, source=None, boundary=None, as_global=False): """ Create a new Enum subclass that replaces a collection of global constants """ # convert all constants from source (or module) that pass filter() to # a new Enum called name, and export the enum and its members back to # module; # also, replace the __reduce_ex__ method so unpickling works in # previous Python versions module_globals = vars(_sys.modules[module]) if source: source = vars(source) else: source = module_globals members = [(key, source[key]) for key in source.keys() if filter(key)] try: # sort by value, name members.sort(key=lambda t: (t[1], t[0])) except TypeError: # unless some values aren't comparable, in which case sort by just name members.sort(key=lambda t: t[0]) cls = cls(name, members, module=module, boundary=boundary or KEEP) cls.__reduce_ex__ = _reduce_ex_by_name if as_global: global_enum(cls) else: module_globals.update(cls.__members__) module_globals[name] = cls return cls def _create_(cls, class_name, names, module=None, qualname=None, type=None, start=1, boundary=None): """Convenience method to create a new Enum class. `names` can be: * A string containing member names, separated either with spaces or commas. Values are auto-numbered from 1. * An iterable of member names. Values are auto-numbered from 1. * An iterable of (member name, value) pairs. * A mapping of member name -> value. """ if PY2: # if class_name is unicode, attempt a conversion to ASCII if isinstance(class_name, unicode): try: class_name = class_name.encode('ascii') except UnicodeEncodeError: raise TypeError('%r is not representable in ASCII' % (class_name, )) metacls = cls.__class__ if type is None: bases = (cls, ) else: bases = (type, cls) _, first_enum = cls._get_mixins_(class_name, bases) generate = getattr(first_enum, '_generate_next_value_', None) generate = getattr(generate, 'im_func', generate) # special processing needed for names? if isinstance(names, basestring): names = names.replace(',', ' ').split() if isinstance(names, (tuple, list)) and names and isinstance(names[0], basestring): original_names, names = names, [] last_values = [] for count, name in enumerate(original_names): value = generate(name, start, count, last_values[:]) last_values.append(value) names.append((name, value)) # Here, names is either an iterable of (name, value) or a mapping. item = None # in case names is empty clsdict = None for item in names: if clsdict is None: # first time initialization if isinstance(item, basestring): clsdict = {} else: # remember the order clsdict = metacls.__prepare__(class_name, bases) if isinstance(item, basestring): member_name, member_value = item, names[item] else: member_name, member_value = item clsdict[member_name] = member_value if clsdict is None: # in case names was empty clsdict = metacls.__prepare__(class_name, bases) enum_class = metacls.__new__(metacls, class_name, bases, clsdict, boundary=boundary) # TODO: replace the frame hack if a blessed way to know the calling # module is ever developed if module is None: try: module = _sys._getframe(2).f_globals['__name__'] except (AttributeError, KeyError): pass if module is None: make_class_unpicklable(enum_class) else: enum_class.__module__ = module if qualname is not None: enum_class.__qualname__ = qualname return enum_class @classmethod def _check_for_existing_members_(mcls, class_name, bases): if Enum is None: return for chain in bases: for base in chain.__mro__: if issubclass(base, Enum) and base._member_names_: raise TypeError( "<aenum %r> cannot extend %r" % (class_name, base) ) @classmethod def _get_mixins_(mcls, class_name, bases): """Returns the type for creating enum members, and the first inherited enum class. bases: the tuple of bases that was given to __new__ """ if not bases or Enum is None: return object, Enum mcls._check_for_existing_members_(class_name, bases) # ensure final parent class is an Enum derivative, find any concrete # data type, and check that Enum has no members first_enum = bases[-1] if first_enum in stdlib_enums: first_enum = bases[-2] if not issubclass(first_enum, Enum): raise TypeError("new enumerations should be created as " "`EnumName([mixin_type, ...] [data_type,] enum_type)`") member_type = mcls._find_data_type_(class_name, bases) or object if first_enum._member_names_: raise TypeError("cannot extend enumerations via subclassing") # return member_type, first_enum @classmethod def _find_data_repr_(mcls, class_name, bases): for chain in bases: for base in chain.__mro__: if base in ((object, ) + stdlib_enums): continue elif isinstance(base, EnumType): # if we hit an Enum, use it's _value_repr_ return base._value_repr_ elif '__repr__' in base.__dict__: # this is our data repr # double-check if a dataclass with a default __repr__ if ( '__dataclass_fields__' in base.__dict__ and '__dataclass_params__' in base.__dict__ and base.__dict__['__dataclass_params__'].repr ): return _dataclass_repr else: return base.__dict__['__repr__'] return None @classmethod def _find_data_type_(mcls, class_name, bases): data_types = set() for chain in bases: candidate = None for base in chain.__mro__: if base in ((object, ) + stdlib_enums): continue elif isinstance(base, EnumType): if base._member_type_ is not object: data_types.add(base._member_type_) break elif '__new__' in base.__dict__ or '__dataclass_fields__' in base.__dict__: if isinstance(base, EnumType): continue elif StdlibFlag is not None and issubclass(base, StdlibFlag): continue data_types.add(candidate or base) break else: candidate = candidate or base if len(data_types) > 1: raise TypeError('%r: too many data types: %r' % (class_name, data_types)) elif data_types: return data_types.pop() else: return None @staticmethod def _get_settings_(bases): """Returns the combined _settings_ of all Enum base classes bases: the tuple of bases given to __new__ """ settings = set() for chain in bases: for base in chain.__mro__: if issubclass(base, Enum): for s in base._settings_: settings.add(s) return settings @classmethod def _find_new_(mcls, clsdict, member_type, first_enum): """Returns the __new__ to be used for creating the enum members. clsdict: the class dictionary given to __new__ member_type: the data type whose __new__ will be used by default first_enum: enumeration to check for an overriding __new__ """ # now find the correct __new__, checking to see of one was defined # by the user; also check earlier enum classes in case a __new__ was # saved as __new_member__ __new__ = clsdict.get('__new__', None) # # should __new__ be saved as __new_member__ later? save_new = first_enum is not None and __new__ is not None # if __new__ is None: # check all possibles for __new_member__ before falling back to # __new__ for method in ('__new_member__', '__new__'): for possible in (member_type, first_enum): target = getattr(possible, method, None) if target not in ( None, None.__new__, object.__new__, Enum.__new__, StdlibEnum.__new__, ): __new__ = target break if __new__ is not None: break else: __new__ = object.__new__ # if a non-object.__new__ is used then whatever value/tuple was # assigned to the enum member name will be passed to __new__ and to the # new enum member's __init__ if first_enum is None or __new__ in (Enum.__new__, object.__new__): new_uses_args = False else: new_uses_args = True # return __new__, save_new, new_uses_args # In order to support Python 2 and 3 with a single # codebase we have to create the Enum methods separately # and then use the `type(name, bases, dict)` method to # create the class. if StdlibEnumMeta: class EnumType(EnumType, StdlibEnumMeta): pass EnumMeta = EnumType enum_dict = _Addendum( dict=EnumType.__prepare__('Enum', (object, )), doc="Generic enumeration.\n\n Derive from this class to define new enumerations.\n\n", ns=globals(), ) @enum_dict @classmethod def __signature__(cls): if cls._member_names_: return '(*values)' else: return '(new_class_name, /, names, *, module=None, qualname=None, type=None, start=1, boundary=None)' @enum_dict def __init__(self, *args, **kwds): # auto-init method _auto_init_ = self._auto_init_ if _auto_init_ is None: return if 'value' in _auto_init_: # remove 'value' from _auto_init_ as it has already been handled _auto_init_ = _auto_init_[1:] if _auto_init_: if len(_auto_init_) < len(args): raise TypeError('%d arguments expected (%s), %d received (%s)' % (len(_auto_init_), _auto_init_, len(args), args)) for name, arg in zip(_auto_init_, args): setattr(self, name, arg) if len(args) < len(_auto_init_): remaining_args = _auto_init_[len(args):] for name in remaining_args: value = kwds.pop(name, undefined) if value is undefined: raise TypeError('missing value for: %r' % (name, )) setattr(self, name, value) if kwds: # too many keyword arguments raise TypeError('invalid keyword(s): %s' % ', '.join(kwds.keys())) @enum_dict def __new__(cls, value): # all enum instances are actually created during class construction # without calling this method; this method is called by the metaclass' # __call__ (i.e. Color(3) ), and by pickle if NoAlias in cls._settings_: raise TypeError('NoAlias enumerations cannot be looked up by value') if type(value) is cls: # For lookups like Color(Color.red) # value = value.value return value # by-value search for a matching enum member # see if it's in the reverse mapping (for hashable values) try: return cls._value2member_map_[value] except KeyError: # Not found, no need to do long O(n) search pass except TypeError: # not there, now do long search -- O(n) behavior for member_value, member in cls._value2member_seq_: if member_value == value: return member # still not found -- try _missing_ hook result = cls._missing_value_(value) if isinstance(result, cls): return result elif result is not None and getattr(cls, '_boundary_', None) is EJECT: return result else: if result is None: if value is no_arg: raise ValueError('%s() should be called with a value' % (cls.__name__, )) else: raise ValueError("%r is not a valid %s" % (value, cls.__name__)) else: raise TypeError( 'error in %s._missing_: returned %r instead of None or a valid member' % (cls.__name__, result) ) @enum_dict @classmethod def __init_subclass__(cls, **kwds): if pyver < PY3_6: # end of the line if kwds: raise TypeError('unconsumed keyword arguments: %r' % (kwds, )) else: super(Enum, cls).__init_subclass__(**kwds) @enum_dict @staticmethod def _generate_next_value_(name, start, count, last_values, *args, **kwds): for last_value in reversed(last_values): try: new_value = last_value + 1 break except TypeError: pass else: new_value = start if args: return (new_value, ) + args else: return new_value @enum_dict @classmethod def _missing_(cls, value): "deprecated, use _missing_value_ instead" return None @enum_dict @classmethod def _missing_value_(cls, value): "used for failed value access" return cls._missing_(value) @enum_dict @classmethod def _missing_name_(cls, name): "used for failed item access" return None @enum_dict def __repr__(self): v_repr = self.__class__._value_repr_ or self._value_.__class__.__repr__ return "<%s.%s: %s>" % (self.__class__.__name__, self._name_, v_repr(self._value_)) @enum_dict def __str__(self): return "%s.%s" % (self.__class__.__name__, self._name_) if PY3: @enum_dict def __dir__(self): """ Returns all members and all public methods """ if self.__class__._member_type_ is object: interesting = set(['__class__', '__doc__', '__eq__', '__hash__', '__module__']) else: interesting = set(n for n in object.__dir__(self) if n not in self._member_map_) for name in getattr(self, '__dict__', []): if name[0] != '_': interesting.add(name) for cls in self.__class__.mro(): for name, obj in cls.__dict__.items(): if name[0] == '_': continue if isinstance(obj, property): # that's an enum.property if obj.fget is not None or name not in self._member_map_: interesting.add(name) else: # in case it was added by `dir(self)` interesting.discard(name) elif not isinstance(obj, self.__class__): interesting.add(name) return sorted(interesting) @enum_dict def __format__(self, format_spec): return str.__format__(str(self), format_spec) @enum_dict def __hash__(self): return hash(self._name_) @enum_dict def __reduce_ex__(self, proto): return self.__class__, (self._value_, ) @enum_dict def __le__(self, other): raise TypeError("unorderable types: %s() <= %s()" % (self.__class__.__name__, other.__class__.__name__)) @enum_dict def __lt__(self, other): raise TypeError("unorderable types: %s() < %s()" % (self.__class__.__name__, other.__class__.__name__)) @enum_dict def __ge__(self, other): raise TypeError("unorderable types: %s() >= %s()" % (self.__class__.__name__, other.__class__.__name__)) @enum_dict def __gt__(self, other): raise TypeError("unorderable types: %s() > %s()" % (self.__class__.__name__, other.__class__.__name__)) @enum_dict def __eq__(self, other): if isinstance(other, self.__class__): return self is other return NotImplemented @enum_dict def __ne__(self, other): if isinstance(other, self.__class__): return self is not other return NotImplemented # enum.property is used to provide access to the `name`, `value', etc., # properties of enum members while keeping some measure of protection # from modification, while still allowing for an enumeration to have # members named `name`, `value`, etc.. This works because enumeration # members are not set directly on the enum class -- enum.property will # look them up in _member_map_. @enum_dict @property def name(self): return self._name_ @enum_dict @property def value(self): return self._value_ @enum_dict @property def values(self): return self._values_ _enum_base = StdlibEnum or object Enum = EnumType('Enum', (_enum_base, ), enum_dict.resolve()) del enum_dict # Enum has now been created def pickle_by_global_name(self, proto): # should not be used with Flag-type enums return self.name _reduce_ex_by_name = pickle_by_global_name def pickle_by_enum_name(self, proto): # should not be used with Flag-type enums return getattr, (self.__class__, self._name_) def _dataclass_repr(self): dcf = self.__dataclass_fields__ return ', '.join( '%s=%r' % (k, getattr(self, k)) for k in dcf.keys() if dcf[k].repr ) # ReprEnum if StdlibReprEnum: _repr_bases = Enum, StdlibReprEnum else: _repr_bases = (Enum, ) ReprEnum = EnumType('ReprEnum', _repr_bases, { '__doc__': "Only changes the repr(), leaving str() and format() to the mixed-in type." }) # IntEnum class IntEnum(int, ReprEnum): """ Enum where members are also (and must be) ints """ # StrEnums class StrEnum(str, ReprEnum): """ Enum where members are also (and must already be) strings default value is member name, lower-cased """ def __new__(cls, *values, **kwds): if kwds: raise TypeError('%r: keyword arguments not supported' % (cls.__name__)) if values: if not isinstance(values[0], str): raise TypeError('%s: values must be str [%r is a %r]' % (cls.__name__, values[0], type(values[0]))) value = str(*values) member = str.__new__(cls, value) member._value_ = value return member __str__ = str.__str__ def _generate_next_value_(name, start, count, last_values): """ Return the lower-cased version of the member name. """ return name.lower() class LowerStrEnum(StrEnum): """ Enum where members are also (and must already be) lower-case strings default value is member name, lower-cased """ def __new__(cls, value, *args, **kwds): obj = StrEnum.__new_member__(cls, value, *args, **kwds) if value != value.lower(): raise ValueError('%r is not lower-case' % value) return obj class UpperStrEnum(StrEnum): """ Enum where members are also (and must already be) upper-case strings default value is member name, upper-cased """ def __new__(cls, value, *args, **kwds): obj = StrEnum.__new_member__(cls, value, *args, **kwds) if value != value.upper(): raise ValueError('%r is not upper-case' % value) return obj def _generate_next_value_(name, start, count, last_values, *args, **kwds): return name.upper() # Specialty Enums if PY3: class AutoEnum(Enum): """ automatically use _generate_next_value_ when values are missing (Python 3 only) """ _settings_ = MagicValue __all__.append('AutoEnum') class AutoNumberEnum(Enum): """ Automatically assign increasing values to members. Py3: numbers match creation order Py2: numbers are assigned alphabetically by member name (unless `_order_` is specified) """ def __new__(cls, *args, **kwds): value = len(cls.__members__) + 1 if cls._member_type_ is int: obj = int.__new__(cls, value) elif cls._member_type_ is long: obj = long.__new__(cls, value) else: obj = object.__new__(cls) obj._value_ = value return obj class AddValueEnum(Enum): _settings_ = AddValue class MultiValueEnum(Enum): """ Multiple values can map to each member. """ _settings_ = MultiValue class NoAliasEnum(Enum): """ Duplicate value members are distinct, but cannot be looked up by value. """ _settings_ = NoAlias class OrderedEnum(Enum): """ Add ordering based on values of Enum members. """ def __ge__(self, other): if self.__class__ is other.__class__: return self._value_ >= other._value_ return NotImplemented def __gt__(self, other): if self.__class__ is other.__class__: return self._value_ > other._value_ return NotImplemented def __le__(self, other): if self.__class__ is other.__class__: return self._value_ <= other._value_ return NotImplemented def __lt__(self, other): if self.__class__ is other.__class__: return self._value_ < other._value_ return NotImplemented if sqlite3: class SqliteEnum(Enum): def __conform__(self, protocol): if protocol is sqlite3.PrepareProtocol: return self.name class UniqueEnum(Enum): """ Ensure no duplicate values exist. """ _settings_ = Unique def convert(enum, name, module, filter, source=None): """ Create a new Enum subclass that replaces a collection of global constants enum: Enum, IntEnum, ... name: name of new Enum module: name of module (__name__ in global context) filter: function that returns True if name should be converted to Enum member source: namespace to check (defaults to 'module') """ # convert all constants from source (or module) that pass filter() to # a new Enum called name, and export the enum and its members back to # module; # also, replace the __reduce_ex__ method so unpickling works in # previous Python versions module_globals = vars(_sys.modules[module]) if source: source = vars(source) else: source = module_globals members = dict((name, value) for name, value in source.items() if filter(name)) enum = enum(name, members, module=module) enum.__reduce_ex__ = _reduce_ex_by_name module_globals.update(enum.__members__) module_globals[name] = enum def extend_enum(enumeration, name, *args, **kwds): """ Add a new member to an existing Enum. """ # there are four possibilities: # - extending an aenum Enum or 3.11+ enum Enum # - extending an aenum Flag or 3.11+ enum Flag # - extending a pre-3.11 stdlib Enum Flag # - extending a 3.11+ stdlib Flag # # fail early if name is already in the enumeration if ( name in enumeration.__dict__ or name in enumeration._member_map_ or name in [t[1] for t in getattr(enumeration, '_value2member_seq_', ())] ): raise TypeError('%r already in use as %r' % (name, enumeration.__dict__.get(name, enumeration[name]))) # and check for other instances in parent classes descriptor = None for base in enumeration.__mro__[1:]: descriptor = base.__dict__.get(name) if descriptor is not None: if isinstance(descriptor, (property, DynamicClassAttribute)): break else: raise TypeError('%r already in use in superclass %r' % (name, base.__name__)) try: _member_map_ = enumeration._member_map_ _member_names_ = enumeration._member_names_ _member_type_ = enumeration._member_type_ _value2member_map_ = enumeration._value2member_map_ base_attributes = set([a for b in enumeration.mro() for a in b.__dict__]) except AttributeError: raise TypeError('%r is not a supported Enum' % (enumeration, )) try: _value2member_seq_ = enumeration._value2member_seq_ _multi_value_ = MultiValue in enumeration._settings_ _no_alias_ = NoAlias in enumeration._settings_ _unique_ = Unique in enumeration._settings_ _auto_init_ = enumeration._auto_init_ or [] except AttributeError: # standard Enum _value2member_seq_ = [] _multi_value_ = False _no_alias_ = False _unique_ = False _auto_init_ = [] if _multi_value_ and not args: # must specify values for multivalue enums raise ValueError('no values specified for MultiValue enum %r' % enumeration.__name__) mt_new = _member_type_.__new__ _new = getattr(enumeration, '_new_member_', None) or getattr(enumeration, '__new_member__', None) or mt_new if not args: last_values = [m.value for m in enumeration] count = len(enumeration) start = getattr(enumeration, '_start_', None) if start is None: start = last_values and (last_values[-1] + 1) or 1 _gnv = getattr(enumeration, '_generate_next_value_', None) if _gnv is not None: args = ( _gnv(name, start, count, last_values), ) else: # must be a 3.4 or 3.5 Enum args = (start, ) if _new is object.__new__: new_uses_args = False else: new_uses_args = True if len(args) == 1: [value] = args else: value = args more_values = () kwds = {} if isinstance(value, enum): args = value.args kwds = value.kwds if not isinstance(value, tuple): args = (value, ) else: args = value # tease value out of auto-init if specified if 'value' in _auto_init_: if 'value' in kwds: value = kwds.pop('value') else: value, args = args[0], args[1:] elif _multi_value_: value, more_values, args = args[0], args[1:], () if new_uses_args: args = (value, ) if _member_type_ is tuple: args = (args, ) if not new_uses_args: new_member = _new(enumeration) if not hasattr(new_member, '_value_'): new_member._value_ = value else: new_member = _new(enumeration, *args, **kwds) if not hasattr(new_member, '_value_'): new_member._value_ = _member_type_(*args) value = new_member._value_ if _multi_value_: if 'value' in _auto_init_: args = more_values else: # put all the values back into args for the init call args = (value, ) + more_values new_member._name_ = name new_member.__objclass__ = enumeration.__class__ new_member.__init__(*args) new_member._values_ = (value, ) + more_values new_member._sort_order_ = len(enumeration._member_names_) # do final checks before modifying enum structures: # - is new member a flag? # - does the new member fit in the enum's declared _boundary_? # - is new member an alias? # _all_bits_ = _flag_mask_ = None if hasattr(enumeration, '_all_bits_'): _all_bits_ = enumeration._all_bits_ | value _flag_mask_ = enumeration._flag_mask_ | value if enumeration._boundary_ != 'keep': missed = list(_iter_bits_lsb(_flag_mask_ & ~_all_bits_)) if missed: raise TypeError( 'invalid Flag %r -- missing values: %s' % (cls, ', '.join((str(i) for i in missed))) ) # If another member with the same value was already defined, the # new member becomes an alias to the existing one. if _no_alias_: # unless NoAlias was specified return _finalize_extend_enum(enumeration, new_member, bits=_all_bits_, mask=_flag_mask_) else: # handle "normal" aliases new_values = new_member._values_ for canonical_member in _member_map_.values(): canonical_values_ = getattr(canonical_member, '_values_', [canonical_member._value_]) for canonical_value in canonical_values_: for new_value in new_values: if canonical_value == new_value: # name is an alias if _unique_ or _multi_value_: # aliases not allowed in Unique and MultiValue enums raise ValueError('%r is a duplicate of %r' % (new_member, canonical_member)) else: # aliased name can be added, remaining checks irrelevant # aliases don't appear in member names (only in __members__ and _member_map_). return _finalize_extend_enum(enumeration, canonical_member, name=name, bits=_all_bits_, mask=_flag_mask_, is_alias=True) # not a standard alias, but maybe a flag alias if pyver < PY3_6: flag_bases = Flag, else: flag_bases = Flag, StdlibFlag if issubclass(enumeration, flag_bases) and hasattr(enumeration, '_all_bits_'): # handle the new flag type if is_single_bit(value): # a new member! (an aliase would have been discovered in the previous loop) return _finalize_extend_enum(enumeration, new_member, bits=_all_bits_, mask=_flag_mask_) else: # might be an 3.11 Flag alias if value & enumeration._flag_mask_ == value and _value2member_map_.get(value) is not None: # yup, it's an alias to existing members... and its an alias of an alias canonical = _value2member_map_.get(value) return _finalize_extend_enum(enumeration, canonical, name=name, bits=_all_bits_, mask=_flag_mask_, is_alias=True) else: return _finalize_extend_enum(enumeration, new_member, bits=_all_bits_, mask=_flag_mask_, is_alias=True) else: # if we get here, we have a brand new member return _finalize_extend_enum(enumeration, new_member) def _finalize_extend_enum(enumeration, new_member, name=None, bits=None, mask=None, is_alias=False): name = name or new_member.name descriptor = None for base in enumeration.__mro__[1:]: descriptor = base.__dict__.get(name) if descriptor is not None: if isinstance(descriptor, (property, DynamicClassAttribute)): break else: raise TypeError('%r already in use in superclass %r' % (name, base.__name__)) if not descriptor: # get redirect in place before adding to _member_map_ redirect = property() redirect.__set_name__(enumeration, name) setattr(enumeration, name, redirect) if not is_alias: enumeration._member_names_.append(name) enumeration._member_map_[name] = new_member for v in getattr(new_member, '_values_', [new_member._value_]): try: enumeration._value2member_map_[v] = new_member except TypeError: enumeration._value2member_seq_ += ((v, new_member), ) if bits: enumeration._all_bits_ = bits enumeration._flag_mask_ = mask if is_single_bit(new_member._value_): enumeration._singles_mask_ |= new_member._value_ return new_member def unique(enumeration): """ Class decorator that ensures only unique members exist in an enumeration. """ duplicates = [] for name, member in enumeration.__members__.items(): if name != member.name: duplicates.append((name, member.name)) if duplicates: duplicate_names = ', '.join( ["%s -> %s" % (alias, name) for (alias, name) in duplicates] ) raise ValueError('duplicate names found in %r: %s' % (enumeration, duplicate_names) ) return enumeration # Flag try: from enum import FlagBoundary except ImportError: class FlagBoundary(StrEnum): """ control how out of range values are handled "strict" -> error is raised [default] "conform" -> extra bits are discarded "eject" -> lose flag status (becomes a normal integer) """ STRICT = auto() CONFORM = auto() EJECT = auto() KEEP = auto() export(FlagBoundary, globals()) if StdlibFlag: _flag_bases = Enum, StdlibFlag else: _flag_bases = (Enum, ) flag_dict = _Addendum( dict=EnumType.__prepare__('Flag', _flag_bases), doc="Generic flag enumeration.\n\nDerive from this class to define new flag enumerations.", ns=globals(), ) flag_dict['_boundary_'] = STRICT flag_dict['_numeric_repr_'] = repr @flag_dict def _generate_next_value_(name, start, count, last_values, *args, **kwds): """ Generate the next value when not given. name: the name of the member start: the initital start value or None count: the number of existing members last_value: the last value assigned or None """ if not count: if args: return ((1, start)[start is not None], ) + args else: return (1, start)[start is not None] else: last_value = max(last_values) try: high_bit = _high_bit(last_value) result = 2 ** (high_bit+1) if args: return (result,) + args else: return result except Exception: pass raise TypeError('invalid Flag value: %r' % last_value) @flag_dict @classmethod def _iter_member_by_value_(cls, value): """ Extract all members from the value in definition (i.e. increasing value) order. """ for val in _iter_bits_lsb(value & cls._singles_mask_): yield cls._value2member_map_.get(val) flag_dict['_iter_member_'] = _iter_member_by_value_ @flag_dict @classmethod def _iter_member_by_def_(cls, value): """ Extract all members from the value in definition order. """ members = list(cls._iter_member_by_value_(value)) members.sort(key=lambda m: m._sort_order_) for member in members: yield member @flag_dict @classmethod def _missing_(cls, value): """ return a member matching the given value, or None """ return cls._create_pseudo_member_(value) @flag_dict @classmethod def _create_pseudo_member_(cls, *values): """ Create a composite member. """ # if we get here, no exact match was found # STRICT - must be composed of single-bit flags value = error_value = values[0] if not isinstance(value, baseinteger): raise ValueError( "%r is not a valid %s" % (error_value, cls.__name__) ) # check boundaries # - value must be in range (e.g. -16 <-> +15, i.e. ~15 <-> 15) # - value must not include any skipped flags (e.g. if bit 2 is not # defined, then 0d10 is invalid) flag_mask = cls._flag_mask_ singles_mask = cls._singles_mask_ all_bits = cls._all_bits_ unknown_bits = all_bits ^ flag_mask unnamed_bits = all_bits & ~flag_mask boundary = cls._boundary_ neg_value = (None, value)[value < 0] # if neg_value: if neg_value <= ~all_bits: if boundary is EJECT: return error_value elif boundary is KEEP: value = 2**(neg_value.bit_length()) + neg_value elif boundary is CONFORM: value = (2**(neg_value.bit_length()) + neg_value) & flag_mask else: raise ValueError( "%r is not a valid %s" % (error_value, cls.__name__) ) else: value = all_bits + 1 + neg_value # member_value = value & singles_mask # all named single-bit values unnamed_value = value & flag_mask & ~singles_mask # all unnamed single-bit values unknown_value = value & ~flag_mask # if boundary is EJECT: if unknown_value: return error_value elif boundary is CONFORM: unknown_value = 0 elif boundary is STRICT: if unknown_value: raise ValueError( "%r is not a valid %s" % (error_value, cls.__name__) ) # members = list(cls._iter_member_(member_value)) final_value = member_value still_unknown = 0 if unnamed_value: found = 0 for n, pm in cls._member_map_.items(): if ( pm not in members and pm._value_ and pm._value_ & final_value == pm._value_ and pm._value_ & unnamed_value ): members.append(pm) final_value |= pm._value_ found |= pm._value_ # anything still unnamed becomes unknown still_unknown = (found & ~unnamed_value) ^ unnamed_value if still_unknown: if boundary is KEEP: pass elif boundary is CONFORM: still_unknown = 0 elif boundary is EJECT: return error_value else: # strict raise ValueError( "%r is not a valid %s" % (error_value, cls.__name__) ) unknown_value |= still_unknown final_value |= unknown_value values = (final_value, ) + values[1:] members.sort(key=lambda m: m._sort_order_) # let class adjust values values = cls._create_pseudo_member_values_(members, *values) __new__ = getattr(cls, '__new_member__', None) if cls._member_type_ is object and not __new__: # construct a singleton enum pseudo-member pseudo_member = object.__new__(cls) else: pseudo_member = (__new__ or cls._member_type_.__new__)(cls, *values) if not hasattr(pseudo_member, '_value_'): pseudo_member._value_ = final_value if members: pseudo_member._name_ = '|'.join([m._name_ for m in members]) if unknown_value: pseudo_member._name_ += '|%s' % cls._numeric_repr_(unknown_value) else: pseudo_member._name_ = None # use setdefault in case another thread already created a composite # with this value, but only if all members are known # note: zero is a special case -- always add it pseudo_member = cls._value2member_map_.setdefault(final_value, pseudo_member) if neg_value is not None: cls._value2member_map_[neg_value] = pseudo_member return pseudo_member @flag_dict @classmethod def _create_pseudo_member_values_(cls, members, *values): """ Return values to be fed to __new__ to create new member. """ if cls._member_type_ in (baseinteger + (object, )): return values elif len(values) < 2: return values + (cls._member_type_(), ) else: return values @flag_dict def __contains__(self, other): """ Returns True if self has at least the same flags set as other. """ if not isinstance(other, self.__class__): raise TypeError( "unsupported operand type(s) for 'in': '%s' and '%s'" % ( type(other).__name__, self.__class__.__name__)) if other._value_ == 0 or self._value_ == 0: return False return other._value_ & self._value_ == other._value_ @flag_dict def __iter__(self): """ Returns flags in definition order. """ for member in self._iter_member_(self._value_): yield member @flag_dict def __len__(self): return bit_count(self._value_) @flag_dict def __repr__(self): cls = self.__class__ if self._name_ is None: # only zero is unnamed by default return '<%s: %r>' % (cls.__name__, self._value_) else: return '<%s.%s: %r>' % (cls.__name__, self._name_, self._value_) @flag_dict def __str__(self): cls = self.__class__ if self._name_ is None: return '%s(%s)' % (cls.__name__, self._value_) else: return '%s.%s' % (cls.__name__, self._name_) if PY2: @flag_dict def __nonzero__(self): return bool(self._value_) else: @flag_dict def __bool__(self): return bool(self._value_) @flag_dict def __or__(self, other): if isinstance(other, self.__class__): other_value = other._value_ elif self._member_type_ is not object and isinstance(other, self._member_type_): other_value = other else: return NotImplemented return self.__class__(self._value_ | other_value) @flag_dict def __and__(self, other): if isinstance(other, self.__class__): other_value = other._value_ elif self._member_type_ is not object and isinstance(other, self._member_type_): other_value = other else: return NotImplemented return self.__class__(self._value_ & other_value) @flag_dict def __xor__(self, other): if isinstance(other, self.__class__): other_value = other._value_ elif self._member_type_ is not object and isinstance(other, self._member_type_): other_value = other else: return NotImplemented return self.__class__(self._value_ ^ other_value) @flag_dict def __invert__(self): if self._inverted_ is None: self._inverted_ = self.__class__(self._singles_mask_ & ~self._value_) if isinstance(self._inverted_, self.__class__): self._inverted_._inverted_ = self return self._inverted_ flag_dict['__ror__'] = __or__ flag_dict['__rand__'] = __and__ flag_dict['__rxor__'] = __xor__ Flag = EnumType('Flag', _flag_bases, flag_dict.resolve()) del(flag_dict) # IntFlag class IntFlag(int, ReprEnum, Flag): "Support for integer-based Flags" _boundary_ = KEEP def __contains__(self, other): """ Returns True if self has at least the same flags set as other. """ if isinstance(other, int): other = self.__class__(other) elif not isinstance(other, self.__class__): raise TypeError( "unsupported operand type(s) for 'in': '%s' and '%s'" % ( type(other).__name__, self.__class__.__name__)) if other._value_ == 0 or self._value_ == 0: return False return other._value_ & self._value_ == other._value_ # helpers def _high_bit(value): """returns index of highest bit, or -1 if value is zero or negative""" return value.bit_length() - 1 def global_enum_repr(self): """ use module.enum_name instead of class.enum_name the module is the last module in case of a multi-module name """ module = self.__class__.__module__.split('.')[-1] return '%s.%s' % (module, self._name_) def global_flag_repr(self): """ use module.flag_name instead of class.flag_name the module is the last module in case of a multi-module name """ module = self.__class__.__module__.split('.')[-1] cls_name = self.__class__.__name__ if self._name_ is None: return "%s.%s(%r)" % (module, cls_name, self._value_) if is_single_bit(self): return '%s.%s' % (module, self._name_) if self._boundary_ is not FlagBoundary.KEEP: return '|'.join(['%s.%s' % (module, name) for name in self.name.split('|')]) else: name = [] for n in self._name_.split('|'): if n[0].isdigit(): name.append(n) else: name.append('%s.%s' % (module, n)) return '|'.join(name) def global_str(self): """ use enum_name instead of class.enum_name """ if self._name_ is None: cls_name = self.__class__.__name__ return "%s(%r)" % (cls_name, self._value_) else: return self._name_ def global_enum(cls, update_str=False): """ decorator that makes the repr() of an enum member reference its module instead of its class; also exports all members to the enum's module's global namespace """ if issubclass(cls, Flag): cls.__repr__ = global_flag_repr else: cls.__repr__ = global_enum_repr if not issubclass(cls, ReprEnum) or update_str: cls.__str__ = global_str _sys.modules[cls.__module__].__dict__.update(cls.__members__) return cls if StdlibEnumMeta: from _weakrefset import WeakSet def __subclasscheck__(cls, subclass): """ Override for issubclass(subclass, cls). """ if not isinstance(subclass, type): raise TypeError('issubclass() arg 1 must be a class (got %r)' % (subclass, )) # Check cache try: cls.__dict__['_subclass_cache_'] except KeyError: cls._subclass_cache_ = WeakSet() cls._subclass_negative_cache_ = WeakSet() except RecursionError: import sys exc, cls, tb = sys.exc_info() exc = RecursionError('possible causes for endless recursion:\n - __getattribute__ is not ignoring __dunder__ attibutes\n - __instancecheck__ and/or __subclasscheck_ are (mutually) recursive\n see `aenum.remove_stdlib_integration` for temporary work-around') raise_from_none(exc) if subclass in cls._subclass_cache_: return True # Check negative cache elif subclass in cls._subclass_negative_cache_: return False if cls is subclass: cls._subclass_cache_.add(subclass) return True # Check if it's a direct subclass if cls in getattr(subclass, '__mro__', ()): cls._subclass_cache_.add(subclass) return True # Check if it's an aenum.Enum|IntEnum|IntFlag|Flag subclass if cls is StdlibIntFlag and issubclass(subclass, IntFlag): cls._subclass_cache_.add(subclass) return True elif cls is StdlibFlag and issubclass(subclass, Flag): cls._subclass_cache_.add(subclass) return True elif cls is StdlibIntEnum and issubclass(subclass, IntEnum): cls._subclass_cache_.add(subclass) return True if cls is StdlibEnum and issubclass(subclass, Enum): cls._subclass_cache_.add(subclass) return True # No dice; update negative cache cls._subclass_negative_cache_.add(subclass) return False def __instancecheck__(cls, instance): subclass = instance.__class__ try: return cls.__subclasscheck__(subclass) except RecursionError: import sys exc, cls, tb = sys.exc_info() exc = RecursionError('possible causes for endless recursion:\n - __getattribute__ is not ignoring __dunder__ attibutes\n - __instancecheck__ and/or __subclasscheck_ are (mutually) recursive\n see `aenum.remove_stdlib_integration` for temporary work-around') raise_from_none(exc) def add_stdlib_integration(): if StdlibEnum: StdlibEnumMeta.__subclasscheck__ = __subclasscheck__ StdlibEnumMeta.__instancecheck__ = __instancecheck__ def remove_stdlib_integration(): """ Remove the __instancecheck__ and __subclasscheck__ overrides from the stdlib Enum. Those overrides are in place so that code detecting stdlib enums will also detect aenum enums. If a buggy __getattribute__, __instancecheck__, or __subclasscheck__ is defined on a custom EnumMeta then RecursionErrors can result; using this function after importing aenum will solve that problem, but the better solution is to fix the buggy method. """ if StdlibEnum: del StdlibEnumMeta.__instancecheck__ del StdlibEnumMeta.__subclasscheck__ class cls2module(object): def __init__(self, cls, *args): self.__name__ = cls.__name__ self._parent_module = cls.__module__ self.__all__ = [] all_objects = cls.__dict__ if not args: args = [k for k, v in all_objects.items() if isinstance(v, (NamedConstant, Enum))] for name in args: self.__dict__[name] = all_objects[name] self.__all__.append(name) def register(self): _sys.modules["%s.%s" % (self._parent_module, self.__name__)] = self