Server IP : 66.29.132.122 / Your IP : 18.216.111.153 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/thread-self/root/proc/thread-self/root/usr/include/mysql/server/private/ |
Upload File : |
/* Copyright (c) 2000, 2010 Oracle and/or its affiliates. All rights reserved. Copyright (C) 2011 Monty Program Ab. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */ #ifndef GCALC_TOOLS_INCLUDED #define GCALC_TOOLS_INCLUDED #include "gcalc_slicescan.h" #include "sql_string.h" /* The Gcalc_function class objects are used to check for a binary relation. The relation can be constructed with the prefix notation using predicates as op_not (as !A) op_union ( A || B || C... ) op_intersection ( A && B && C ... ) op_symdifference ( A+B+C+... == 1 ) op_difference ( A && !(B||C||..)) with the calls of the add_operation(operation, n_operands) method. The relation is calculated over a set of shapes, that in turn have to be added with the add_new_shape() method. All the 'shapes' can be set to 0 with clear_shapes() method and single value can be changed with the invert_state() method. Then the value of the relation can be calculated with the count() method. Frequently used method is find_function(Gcalc_scan_iterator it) that iterates through the 'it' until the relation becomes TRUE. */ class Gcalc_function { private: String shapes_buffer; String function_buffer; int *i_states; int *b_states; uint32 cur_object_id; uint n_shapes; int count_internal(const char *cur_func, uint set_type, const char **end); public: enum op_type { v_empty= 0x00000000, v_find_t= 0x01000000, v_find_f= 0x02000000, v_t_found= 0x03000000, v_f_found= 0x04000000, v_mask= 0x07000000, op_not= 0x80000000, op_shape= 0x00000000, op_union= 0x10000000, op_intersection= 0x20000000, op_symdifference= 0x30000000, op_difference= 0x40000000, op_repeat= 0x50000000, op_border= 0x60000000, op_internals= 0x70000000, op_false= 0x08000000, op_any= 0x78000000 /* The mask to get any of the operations */ }; enum shape_type { shape_point= 0, shape_line= 1, shape_polygon= 2, shape_hole= 3 }; enum count_result { result_false= 0, result_true= 1, result_unknown= 2 }; Gcalc_function() : n_shapes(0) {} gcalc_shape_info add_new_shape(uint32 shape_id, shape_type shape_kind); /* Adds the leaf operation that returns the shape value. Also adds the shape to the list of operands. */ int single_shape_op(shape_type shape_kind, gcalc_shape_info *si); void add_operation(uint operation, uint32 n_operands); void add_not_operation(op_type operation, uint32 n_operands); uint32 get_next_expression_pos() { return function_buffer.length(); } void add_operands_to_op(uint32 operation_pos, uint32 n_operands); int repeat_expression(uint32 exp_pos); void set_cur_obj(uint32 cur_obj) { cur_object_id= cur_obj; } int reserve_shape_buffer(uint n_shapes); int reserve_op_buffer(uint n_ops); uint get_nshapes() const { return n_shapes; } shape_type get_shape_kind(gcalc_shape_info si) const { return (shape_type) uint4korr(shapes_buffer.ptr() + (si*4)); } void set_states(int *shape_states) { i_states= shape_states; } int alloc_states(); void invert_i_state(gcalc_shape_info shape) { i_states[shape]^= 1; } void set_i_state(gcalc_shape_info shape) { i_states[shape]= 1; } void clear_i_state(gcalc_shape_info shape) { i_states[shape]= 0; } void set_b_state(gcalc_shape_info shape) { b_states[shape]= 1; } void clear_b_state(gcalc_shape_info shape) { b_states[shape]= 0; } int get_state(gcalc_shape_info shape) { return i_states[shape] | b_states[shape]; } int get_i_state(gcalc_shape_info shape) { return i_states[shape]; } int get_b_state(gcalc_shape_info shape) { return b_states[shape]; } int count() { return count_internal(function_buffer.ptr(), 0, 0); } int count_last() { return count_internal(function_buffer.ptr(), 1, 0); } void clear_i_states(); void clear_b_states(); void reset(); int check_function(Gcalc_scan_iterator &scan_it); }; /* Gcalc_operation_transporter class extends the Gcalc_shape_transporter. In addition to the parent's functionality, it fills the Gcalc_function object so it has the function that determines the proper shape. For example Multipolyline will be represented as an union of polylines. */ class Gcalc_operation_transporter : public Gcalc_shape_transporter { protected: Gcalc_function *m_fn; gcalc_shape_info m_si; public: Gcalc_operation_transporter(Gcalc_function *fn, Gcalc_heap *heap) : Gcalc_shape_transporter(heap), m_fn(fn) {} int single_point(double x, double y) override; int start_line() override; int complete_line() override; int start_poly() override; int complete_poly() override; int start_ring() override; int complete_ring() override; int add_point(double x, double y) override; int start_collection(int n_objects) override; int empty_shape() override; }; /* When we calculate the result of an spatial operation like Union or Intersection, we receive vertexes of the result one-by-one, and probably need to treat them in variative ways. So, the Gcalc_result_receiver class designed to get these vertexes and construct shapes/objects out of them. and to store the result in an appropriate format */ class Gcalc_result_receiver { String buffer; uint32 n_points; Gcalc_function::shape_type common_shapetype; bool collection_result; uint32 n_shapes; uint32 n_holes; Gcalc_function::shape_type cur_shape; uint32 shape_pos; double first_x, first_y, prev_x, prev_y; double shape_area; public: Gcalc_result_receiver() : n_points(0), common_shapetype(Gcalc_function::shape_point), collection_result(FALSE), n_shapes(0), n_holes(0), cur_shape(Gcalc_function::shape_point), shape_pos(0) {} int start_shape(Gcalc_function::shape_type shape); int add_point(double x, double y); int complete_shape(); int single_point(double x, double y); int done(); void reset(); const char *result() { return buffer.ptr(); } uint length() { return buffer.length(); } int get_nshapes() { return n_shapes; } int get_nholes() { return n_holes; } int get_result_typeid(); uint32 position() { return buffer.length(); } int move_hole(uint32 dest_position, uint32 source_position, uint32 *position_shift); }; /* Gcalc_operation_reducer class incapsulates the spatial operation functionality. It analyses the slices generated by the slicescan and calculates the shape of the result defined by some Gcalc_function. */ class Gcalc_operation_reducer : public Gcalc_dyn_list { public: enum modes { /* Numeric values important here - careful with changing */ default_mode= 0, prefer_big_with_holes= 1, polygon_selfintersections_allowed= 2, /* allowed in the result */ line_selfintersections_allowed= 4 /* allowed in the result */ }; Gcalc_operation_reducer(size_t blk_size=8192); Gcalc_operation_reducer(const Gcalc_operation_reducer &gor); void init(Gcalc_function *fn, modes mode= default_mode); Gcalc_operation_reducer(Gcalc_function *fn, modes mode= default_mode, size_t blk_size=8192); GCALC_DECL_TERMINATED_STATE(killed) int count_slice(Gcalc_scan_iterator *si); int count_all(Gcalc_heap *hp); int get_result(Gcalc_result_receiver *storage); void reset(); #ifndef GCALC_DBUG_OFF int n_res_points; #endif /*GCALC_DBUG_OFF*/ class res_point : public Gcalc_dyn_list::Item { public: int intersection_point; union { const Gcalc_heap::Info *pi; res_point *first_poly_node; }; union { res_point *outer_poly; uint32 poly_position; }; res_point *up; res_point *down; res_point *glue; Gcalc_function::shape_type type; Gcalc_dyn_list::Item **prev_hook; #ifndef GCALC_DBUG_OFF int point_n; #endif /*GCALC_DBUG_OFF*/ void set(const Gcalc_scan_iterator *si); res_point *get_next() { return (res_point *)next; } }; class active_thread : public Gcalc_dyn_list::Item { public: res_point *rp; res_point *thread_start; const Gcalc_heap::Info *p1, *p2; res_point *enabled() { return rp; } active_thread *get_next() { return (active_thread *)next; } }; class poly_instance : public Gcalc_dyn_list::Item { public: uint32 *after_poly_position; poly_instance *get_next() { return (poly_instance *)next; } }; class line : public Gcalc_dyn_list::Item { public: active_thread *t; int incoming; const Gcalc_scan_iterator::point *p; line *get_next() { return (line *)next; } }; class poly_border : public Gcalc_dyn_list::Item { public: active_thread *t; int incoming; int prev_state; const Gcalc_scan_iterator::point *p; poly_border *get_next() { return (poly_border *)next; } }; line *m_lines; Gcalc_dyn_list::Item **m_lines_hook; poly_border *m_poly_borders; Gcalc_dyn_list::Item **m_poly_borders_hook; line *new_line() { return (line *) new_item(); } poly_border *new_poly_border() { return (poly_border *) new_item(); } int add_line(int incoming, active_thread *t, const Gcalc_scan_iterator::point *p); int add_poly_border(int incoming, active_thread *t, int prev_state, const Gcalc_scan_iterator::point *p); protected: Gcalc_function *m_fn; Gcalc_dyn_list::Item **m_res_hook; res_point *m_result; int m_mode; res_point *result_heap; active_thread *m_first_active_thread; res_point *add_res_point(Gcalc_function::shape_type type); active_thread *new_active_thread() { return (active_thread *)new_item(); } poly_instance *new_poly() { return (poly_instance *) new_item(); } private: int start_line(active_thread *t, const Gcalc_scan_iterator::point *p, const Gcalc_scan_iterator *si); int end_line(active_thread *t, const Gcalc_scan_iterator *si); int connect_threads(int incoming_a, int incoming_b, active_thread *ta, active_thread *tb, const Gcalc_scan_iterator::point *pa, const Gcalc_scan_iterator::point *pb, active_thread *prev_range, const Gcalc_scan_iterator *si, Gcalc_function::shape_type s_t); int add_single_point(const Gcalc_scan_iterator *si); poly_border *get_pair_border(poly_border *b1); int continue_range(active_thread *t, const Gcalc_heap::Info *p, const Gcalc_heap::Info *p_next); int continue_i_range(active_thread *t, const Gcalc_heap::Info *ii); int end_couple(active_thread *t0, active_thread *t1, const Gcalc_heap::Info *p); int get_single_result(res_point *res, Gcalc_result_receiver *storage); int get_result_thread(res_point *cur, Gcalc_result_receiver *storage, int move_upward, res_point *first_poly_node); int get_polygon_result(res_point *cur, Gcalc_result_receiver *storage, res_point *first_poly_node); int get_line_result(res_point *cur, Gcalc_result_receiver *storage); void free_result(res_point *res); }; #endif /*GCALC_TOOLS_INCLUDED*/