Server IP : 66.29.132.122 / Your IP : 13.58.166.144 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/thread-self/root/opt/hc_python/lib/python3.8/site-packages/sqlalchemy/util/ |
Upload File : |
# util/_collections.py # Copyright (C) 2005-2024 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php # mypy: allow-untyped-defs, allow-untyped-calls """Collection classes and helpers.""" from __future__ import annotations import operator import threading import types import typing from typing import Any from typing import Callable from typing import cast from typing import Container from typing import Dict from typing import FrozenSet from typing import Generic from typing import Iterable from typing import Iterator from typing import List from typing import Mapping from typing import NoReturn from typing import Optional from typing import overload from typing import Sequence from typing import Set from typing import Tuple from typing import TypeVar from typing import Union from typing import ValuesView import weakref from ._has_cy import HAS_CYEXTENSION from .typing import is_non_string_iterable from .typing import Literal from .typing import Protocol if typing.TYPE_CHECKING or not HAS_CYEXTENSION: from ._py_collections import immutabledict as immutabledict from ._py_collections import IdentitySet as IdentitySet from ._py_collections import ReadOnlyContainer as ReadOnlyContainer from ._py_collections import ImmutableDictBase as ImmutableDictBase from ._py_collections import OrderedSet as OrderedSet from ._py_collections import unique_list as unique_list else: from sqlalchemy.cyextension.immutabledict import ( ReadOnlyContainer as ReadOnlyContainer, ) from sqlalchemy.cyextension.immutabledict import ( ImmutableDictBase as ImmutableDictBase, ) from sqlalchemy.cyextension.immutabledict import ( immutabledict as immutabledict, ) from sqlalchemy.cyextension.collections import IdentitySet as IdentitySet from sqlalchemy.cyextension.collections import OrderedSet as OrderedSet from sqlalchemy.cyextension.collections import ( # noqa unique_list as unique_list, ) _T = TypeVar("_T", bound=Any) _KT = TypeVar("_KT", bound=Any) _VT = TypeVar("_VT", bound=Any) _T_co = TypeVar("_T_co", covariant=True) EMPTY_SET: FrozenSet[Any] = frozenset() NONE_SET: FrozenSet[Any] = frozenset([None]) def merge_lists_w_ordering(a: List[Any], b: List[Any]) -> List[Any]: """merge two lists, maintaining ordering as much as possible. this is to reconcile vars(cls) with cls.__annotations__. Example:: >>> a = ['__tablename__', 'id', 'x', 'created_at'] >>> b = ['id', 'name', 'data', 'y', 'created_at'] >>> merge_lists_w_ordering(a, b) ['__tablename__', 'id', 'name', 'data', 'y', 'x', 'created_at'] This is not necessarily the ordering that things had on the class, in this case the class is:: class User(Base): __tablename__ = "users" id: Mapped[int] = mapped_column(primary_key=True) name: Mapped[str] data: Mapped[Optional[str]] x = Column(Integer) y: Mapped[int] created_at: Mapped[datetime.datetime] = mapped_column() But things are *mostly* ordered. The algorithm could also be done by creating a partial ordering for all items in both lists and then using topological_sort(), but that is too much overhead. Background on how I came up with this is at: https://gist.github.com/zzzeek/89de958cf0803d148e74861bd682ebae """ overlap = set(a).intersection(b) result = [] current, other = iter(a), iter(b) while True: for element in current: if element in overlap: overlap.discard(element) other, current = current, other break result.append(element) else: result.extend(other) break return result def coerce_to_immutabledict(d: Mapping[_KT, _VT]) -> immutabledict[_KT, _VT]: if not d: return EMPTY_DICT elif isinstance(d, immutabledict): return d else: return immutabledict(d) EMPTY_DICT: immutabledict[Any, Any] = immutabledict() class FacadeDict(ImmutableDictBase[_KT, _VT]): """A dictionary that is not publicly mutable.""" def __new__(cls, *args: Any) -> FacadeDict[Any, Any]: new = ImmutableDictBase.__new__(cls) return new def copy(self) -> NoReturn: raise NotImplementedError( "an immutabledict shouldn't need to be copied. use dict(d) " "if you need a mutable dictionary." ) def __reduce__(self) -> Any: return FacadeDict, (dict(self),) def _insert_item(self, key: _KT, value: _VT) -> None: """insert an item into the dictionary directly.""" dict.__setitem__(self, key, value) def __repr__(self) -> str: return "FacadeDict(%s)" % dict.__repr__(self) _DT = TypeVar("_DT", bound=Any) _F = TypeVar("_F", bound=Any) class Properties(Generic[_T]): """Provide a __getattr__/__setattr__ interface over a dict.""" __slots__ = ("_data",) _data: Dict[str, _T] def __init__(self, data: Dict[str, _T]): object.__setattr__(self, "_data", data) def __len__(self) -> int: return len(self._data) def __iter__(self) -> Iterator[_T]: return iter(list(self._data.values())) def __dir__(self) -> List[str]: return dir(super()) + [str(k) for k in self._data.keys()] def __add__(self, other: Properties[_F]) -> List[Union[_T, _F]]: return list(self) + list(other) def __setitem__(self, key: str, obj: _T) -> None: self._data[key] = obj def __getitem__(self, key: str) -> _T: return self._data[key] def __delitem__(self, key: str) -> None: del self._data[key] def __setattr__(self, key: str, obj: _T) -> None: self._data[key] = obj def __getstate__(self) -> Dict[str, Any]: return {"_data": self._data} def __setstate__(self, state: Dict[str, Any]) -> None: object.__setattr__(self, "_data", state["_data"]) def __getattr__(self, key: str) -> _T: try: return self._data[key] except KeyError: raise AttributeError(key) def __contains__(self, key: str) -> bool: return key in self._data def as_readonly(self) -> ReadOnlyProperties[_T]: """Return an immutable proxy for this :class:`.Properties`.""" return ReadOnlyProperties(self._data) def update(self, value: Dict[str, _T]) -> None: self._data.update(value) @overload def get(self, key: str) -> Optional[_T]: ... @overload def get(self, key: str, default: Union[_DT, _T]) -> Union[_DT, _T]: ... def get( self, key: str, default: Optional[Union[_DT, _T]] = None ) -> Optional[Union[_T, _DT]]: if key in self: return self[key] else: return default def keys(self) -> List[str]: return list(self._data) def values(self) -> List[_T]: return list(self._data.values()) def items(self) -> List[Tuple[str, _T]]: return list(self._data.items()) def has_key(self, key: str) -> bool: return key in self._data def clear(self) -> None: self._data.clear() class OrderedProperties(Properties[_T]): """Provide a __getattr__/__setattr__ interface with an OrderedDict as backing store.""" __slots__ = () def __init__(self): Properties.__init__(self, OrderedDict()) class ReadOnlyProperties(ReadOnlyContainer, Properties[_T]): """Provide immutable dict/object attribute to an underlying dictionary.""" __slots__ = () def _ordered_dictionary_sort(d, key=None): """Sort an OrderedDict in-place.""" items = [(k, d[k]) for k in sorted(d, key=key)] d.clear() d.update(items) OrderedDict = dict sort_dictionary = _ordered_dictionary_sort class WeakSequence(Sequence[_T]): def __init__(self, __elements: Sequence[_T] = ()): # adapted from weakref.WeakKeyDictionary, prevent reference # cycles in the collection itself def _remove(item, selfref=weakref.ref(self)): self = selfref() if self is not None: self._storage.remove(item) self._remove = _remove self._storage = [ weakref.ref(element, _remove) for element in __elements ] def append(self, item): self._storage.append(weakref.ref(item, self._remove)) def __len__(self): return len(self._storage) def __iter__(self): return ( obj for obj in (ref() for ref in self._storage) if obj is not None ) def __getitem__(self, index): try: obj = self._storage[index] except KeyError: raise IndexError("Index %s out of range" % index) else: return obj() class OrderedIdentitySet(IdentitySet): def __init__(self, iterable: Optional[Iterable[Any]] = None): IdentitySet.__init__(self) self._members = OrderedDict() if iterable: for o in iterable: self.add(o) class PopulateDict(Dict[_KT, _VT]): """A dict which populates missing values via a creation function. Note the creation function takes a key, unlike collections.defaultdict. """ def __init__(self, creator: Callable[[_KT], _VT]): self.creator = creator def __missing__(self, key: Any) -> Any: self[key] = val = self.creator(key) return val class WeakPopulateDict(Dict[_KT, _VT]): """Like PopulateDict, but assumes a self + a method and does not create a reference cycle. """ def __init__(self, creator_method: types.MethodType): self.creator = creator_method.__func__ weakself = creator_method.__self__ self.weakself = weakref.ref(weakself) def __missing__(self, key: Any) -> Any: self[key] = val = self.creator(self.weakself(), key) return val # Define collections that are capable of storing # ColumnElement objects as hashable keys/elements. # At this point, these are mostly historical, things # used to be more complicated. column_set = set column_dict = dict ordered_column_set = OrderedSet class UniqueAppender(Generic[_T]): """Appends items to a collection ensuring uniqueness. Additional appends() of the same object are ignored. Membership is determined by identity (``is a``) not equality (``==``). """ __slots__ = "data", "_data_appender", "_unique" data: Union[Iterable[_T], Set[_T], List[_T]] _data_appender: Callable[[_T], None] _unique: Dict[int, Literal[True]] def __init__( self, data: Union[Iterable[_T], Set[_T], List[_T]], via: Optional[str] = None, ): self.data = data self._unique = {} if via: self._data_appender = getattr(data, via) elif hasattr(data, "append"): self._data_appender = cast("List[_T]", data).append elif hasattr(data, "add"): self._data_appender = cast("Set[_T]", data).add def append(self, item: _T) -> None: id_ = id(item) if id_ not in self._unique: self._data_appender(item) self._unique[id_] = True def __iter__(self) -> Iterator[_T]: return iter(self.data) def coerce_generator_arg(arg: Any) -> List[Any]: if len(arg) == 1 and isinstance(arg[0], types.GeneratorType): return list(arg[0]) else: return cast("List[Any]", arg) def to_list(x: Any, default: Optional[List[Any]] = None) -> List[Any]: if x is None: return default # type: ignore if not is_non_string_iterable(x): return [x] elif isinstance(x, list): return x else: return list(x) def has_intersection(set_: Container[Any], iterable: Iterable[Any]) -> bool: r"""return True if any items of set\_ are present in iterable. Goes through special effort to ensure __hash__ is not called on items in iterable that don't support it. """ return any(i in set_ for i in iterable if i.__hash__) def to_set(x): if x is None: return set() if not isinstance(x, set): return set(to_list(x)) else: return x def to_column_set(x: Any) -> Set[Any]: if x is None: return column_set() if not isinstance(x, column_set): return column_set(to_list(x)) else: return x def update_copy(d, _new=None, **kw): """Copy the given dict and update with the given values.""" d = d.copy() if _new: d.update(_new) d.update(**kw) return d def flatten_iterator(x: Iterable[_T]) -> Iterator[_T]: """Given an iterator of which further sub-elements may also be iterators, flatten the sub-elements into a single iterator. """ elem: _T for elem in x: if not isinstance(elem, str) and hasattr(elem, "__iter__"): yield from flatten_iterator(elem) else: yield elem class LRUCache(typing.MutableMapping[_KT, _VT]): """Dictionary with 'squishy' removal of least recently used items. Note that either get() or [] should be used here, but generally its not safe to do an "in" check first as the dictionary can change subsequent to that call. """ __slots__ = ( "capacity", "threshold", "size_alert", "_data", "_counter", "_mutex", ) capacity: int threshold: float size_alert: Optional[Callable[[LRUCache[_KT, _VT]], None]] def __init__( self, capacity: int = 100, threshold: float = 0.5, size_alert: Optional[Callable[..., None]] = None, ): self.capacity = capacity self.threshold = threshold self.size_alert = size_alert self._counter = 0 self._mutex = threading.Lock() self._data: Dict[_KT, Tuple[_KT, _VT, List[int]]] = {} def _inc_counter(self): self._counter += 1 return self._counter @overload def get(self, key: _KT) -> Optional[_VT]: ... @overload def get(self, key: _KT, default: Union[_VT, _T]) -> Union[_VT, _T]: ... def get( self, key: _KT, default: Optional[Union[_VT, _T]] = None ) -> Optional[Union[_VT, _T]]: item = self._data.get(key) if item is not None: item[2][0] = self._inc_counter() return item[1] else: return default def __getitem__(self, key: _KT) -> _VT: item = self._data[key] item[2][0] = self._inc_counter() return item[1] def __iter__(self) -> Iterator[_KT]: return iter(self._data) def __len__(self) -> int: return len(self._data) def values(self) -> ValuesView[_VT]: return typing.ValuesView({k: i[1] for k, i in self._data.items()}) def __setitem__(self, key: _KT, value: _VT) -> None: self._data[key] = (key, value, [self._inc_counter()]) self._manage_size() def __delitem__(self, __v: _KT) -> None: del self._data[__v] @property def size_threshold(self) -> float: return self.capacity + self.capacity * self.threshold def _manage_size(self) -> None: if not self._mutex.acquire(False): return try: size_alert = bool(self.size_alert) while len(self) > self.capacity + self.capacity * self.threshold: if size_alert: size_alert = False self.size_alert(self) # type: ignore by_counter = sorted( self._data.values(), key=operator.itemgetter(2), reverse=True, ) for item in by_counter[self.capacity :]: try: del self._data[item[0]] except KeyError: # deleted elsewhere; skip continue finally: self._mutex.release() class _CreateFuncType(Protocol[_T_co]): def __call__(self) -> _T_co: ... class _ScopeFuncType(Protocol): def __call__(self) -> Any: ... class ScopedRegistry(Generic[_T]): """A Registry that can store one or multiple instances of a single class on the basis of a "scope" function. The object implements ``__call__`` as the "getter", so by calling ``myregistry()`` the contained object is returned for the current scope. :param createfunc: a callable that returns a new object to be placed in the registry :param scopefunc: a callable that will return a key to store/retrieve an object. """ __slots__ = "createfunc", "scopefunc", "registry" createfunc: _CreateFuncType[_T] scopefunc: _ScopeFuncType registry: Any def __init__( self, createfunc: Callable[[], _T], scopefunc: Callable[[], Any] ): """Construct a new :class:`.ScopedRegistry`. :param createfunc: A creation function that will generate a new value for the current scope, if none is present. :param scopefunc: A function that returns a hashable token representing the current scope (such as, current thread identifier). """ self.createfunc = createfunc self.scopefunc = scopefunc self.registry = {} def __call__(self) -> _T: key = self.scopefunc() try: return self.registry[key] # type: ignore[no-any-return] except KeyError: return self.registry.setdefault(key, self.createfunc()) # type: ignore[no-any-return] # noqa: E501 def has(self) -> bool: """Return True if an object is present in the current scope.""" return self.scopefunc() in self.registry def set(self, obj: _T) -> None: """Set the value for the current scope.""" self.registry[self.scopefunc()] = obj def clear(self) -> None: """Clear the current scope, if any.""" try: del self.registry[self.scopefunc()] except KeyError: pass class ThreadLocalRegistry(ScopedRegistry[_T]): """A :class:`.ScopedRegistry` that uses a ``threading.local()`` variable for storage. """ def __init__(self, createfunc: Callable[[], _T]): self.createfunc = createfunc self.registry = threading.local() def __call__(self) -> _T: try: return self.registry.value # type: ignore[no-any-return] except AttributeError: val = self.registry.value = self.createfunc() return val def has(self) -> bool: return hasattr(self.registry, "value") def set(self, obj: _T) -> None: self.registry.value = obj def clear(self) -> None: try: del self.registry.value except AttributeError: pass def has_dupes(sequence, target): """Given a sequence and search object, return True if there's more than one, False if zero or one of them. """ # compare to .index version below, this version introduces less function # overhead and is usually the same speed. At 15000 items (way bigger than # a relationship-bound collection in memory usually is) it begins to # fall behind the other version only by microseconds. c = 0 for item in sequence: if item is target: c += 1 if c > 1: return True return False # .index version. the two __contains__ calls as well # as .index() and isinstance() slow this down. # def has_dupes(sequence, target): # if target not in sequence: # return False # elif not isinstance(sequence, collections_abc.Sequence): # return False # # idx = sequence.index(target) # return target in sequence[idx + 1:]