403Webshell
Server IP : 66.29.132.122  /  Your IP : 3.141.29.178
Web Server : LiteSpeed
System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : admazpex ( 531)
PHP Version : 7.2.34
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/proc/thread-self/root/proc/thread-self/root/proc/self/root/proc/self/root/lib64/python2.7/Demo/scripts/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/proc/thread-self/root/proc/thread-self/root/proc/self/root/proc/self/root/lib64/python2.7/Demo/scripts/queens.py
#! /usr/bin/python2.7

"""N queens problem.

The (well-known) problem is due to Niklaus Wirth.

This solution is inspired by Dijkstra (Structured Programming).  It is
a classic recursive backtracking approach.

"""

N = 8                                   # Default; command line overrides

class Queens:

    def __init__(self, n=N):
        self.n = n
        self.reset()

    def reset(self):
        n = self.n
        self.y = [None] * n             # Where is the queen in column x
        self.row = [0] * n              # Is row[y] safe?
        self.up = [0] * (2*n-1)         # Is upward diagonal[x-y] safe?
        self.down = [0] * (2*n-1)       # Is downward diagonal[x+y] safe?
        self.nfound = 0                 # Instrumentation

    def solve(self, x=0):               # Recursive solver
        for y in range(self.n):
            if self.safe(x, y):
                self.place(x, y)
                if x+1 == self.n:
                    self.display()
                else:
                    self.solve(x+1)
                self.remove(x, y)

    def safe(self, x, y):
        return not self.row[y] and not self.up[x-y] and not self.down[x+y]

    def place(self, x, y):
        self.y[x] = y
        self.row[y] = 1
        self.up[x-y] = 1
        self.down[x+y] = 1

    def remove(self, x, y):
        self.y[x] = None
        self.row[y] = 0
        self.up[x-y] = 0
        self.down[x+y] = 0

    silent = 0                          # If true, count solutions only

    def display(self):
        self.nfound = self.nfound + 1
        if self.silent:
            return
        print '+-' + '--'*self.n + '+'
        for y in range(self.n-1, -1, -1):
            print '|',
            for x in range(self.n):
                if self.y[x] == y:
                    print "Q",
                else:
                    print ".",
            print '|'
        print '+-' + '--'*self.n + '+'

def main():
    import sys
    silent = 0
    n = N
    if sys.argv[1:2] == ['-n']:
        silent = 1
        del sys.argv[1]
    if sys.argv[1:]:
        n = int(sys.argv[1])
    q = Queens(n)
    q.silent = silent
    q.solve()
    print "Found", q.nfound, "solutions."

if __name__ == "__main__":
    main()

Youez - 2016 - github.com/yon3zu
LinuXploit