Server IP : 66.29.132.122 / Your IP : 3.149.23.165 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/proc/self/root/proc/thread-self/root/proc/self/root/proc/self/root/proc/self/root/proc/thread-self/root/opt/alt/ruby21/lib64/ruby/2.1.0/ |
Upload File : |
# Profile provides a way to Profile your Ruby application. # # Profiling your program is a way of determining which methods are called and # how long each method takes to complete. This way you can detect which # methods are possible bottlenecks. # # Profiling your program will slow down your execution time considerably, # so activate it only when you need it. Don't confuse benchmarking with # profiling. # # There are two ways to activate Profiling: # # == Command line # # Run your Ruby script with <code>-rprofile</code>: # # ruby -rprofile example.rb # # If you're profiling an executable in your <code>$PATH</code> you can use # <code>ruby -S</code>: # # ruby -rprofile -S some_executable # # == From code # # Just require 'profile': # # require 'profile' # # def slow_method # 5000.times do # 9999999999999999*999999999 # end # end # # def fast_method # 5000.times do # 9999999999999999+999999999 # end # end # # slow_method # fast_method # # The output in both cases is a report when the execution is over: # # ruby -rprofile example.rb # # % cumulative self self total # time seconds seconds calls ms/call ms/call name # 68.42 0.13 0.13 2 65.00 95.00 Integer#times # 15.79 0.16 0.03 5000 0.01 0.01 Fixnum#* # 15.79 0.19 0.03 5000 0.01 0.01 Fixnum#+ # 0.00 0.19 0.00 2 0.00 0.00 IO#set_encoding # 0.00 0.19 0.00 1 0.00 100.00 Object#slow_method # 0.00 0.19 0.00 2 0.00 0.00 Module#method_added # 0.00 0.19 0.00 1 0.00 90.00 Object#fast_method # 0.00 0.19 0.00 1 0.00 190.00 #toplevel module Profiler__ class Wrapper < Struct.new(:defined_class, :method_id, :hash) # :nodoc: private :defined_class=, :method_id=, :hash= def initialize(klass, mid) super(klass, mid, nil) self.hash = Struct.instance_method(:hash).bind(self).call end def to_s "#{defined_class.inspect}#".sub(/\A\#<Class:(.*)>#\z/, '\1.') << method_id.to_s end alias inspect to_s end # internal values @@start = nil # the start time that profiling began @@stacks = nil # the map of stacks keyed by thread @@maps = nil # the map of call data keyed by thread, class and id. Call data contains the call count, total time, PROFILE_CALL_PROC = TracePoint.new(*%i[call c_call b_call]) {|tp| # :nodoc: now = Process.times[0] stack = (@@stacks[Thread.current] ||= []) stack.push [now, 0.0] } PROFILE_RETURN_PROC = TracePoint.new(*%i[return c_return b_return]) {|tp| # :nodoc: now = Process.times[0] key = Wrapper.new(tp.defined_class, tp.method_id) stack = (@@stacks[Thread.current] ||= []) if tick = stack.pop threadmap = (@@maps[Thread.current] ||= {}) data = (threadmap[key] ||= [0, 0.0, 0.0, key]) data[0] += 1 cost = now - tick[0] data[1] += cost data[2] += cost - tick[1] stack[-1][1] += cost if stack[-1] end } module_function # Starts the profiler. # # See Profiler__ for more information. def start_profile @@start = Process.times[0] @@stacks = {} @@maps = {} PROFILE_CALL_PROC.enable PROFILE_RETURN_PROC.enable end # Stops the profiler. # # See Profiler__ for more information. def stop_profile PROFILE_CALL_PROC.disable PROFILE_RETURN_PROC.disable end # Outputs the results from the profiler. # # See Profiler__ for more information. def print_profile(f) stop_profile total = Process.times[0] - @@start if total == 0 then total = 0.01 end totals = {} @@maps.values.each do |threadmap| threadmap.each do |key, data| total_data = (totals[key] ||= [0, 0.0, 0.0, key]) total_data[0] += data[0] total_data[1] += data[1] total_data[2] += data[2] end end # Maybe we should show a per thread output and a totals view? data = totals.values data = data.sort_by{|x| -x[2]} sum = 0 f.printf " %% cumulative self self total\n" f.printf " time seconds seconds calls ms/call ms/call name\n" for d in data sum += d[2] f.printf "%6.2f %8.2f %8.2f %8d ", d[2]/total*100, sum, d[2], d[0] f.printf "%8.2f %8.2f %s\n", d[2]*1000/d[0], d[1]*1000/d[0], d[3] end f.printf "%6.2f %8.2f %8.2f %8d ", 0.0, total, 0.0, 1 # ??? f.printf "%8.2f %8.2f %s\n", 0.0, total*1000, "#toplevel" # ??? end end