Server IP : 66.29.132.122 / Your IP : 3.140.188.185 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/proc/self/root/proc/thread-self/root/proc/self/root/proc/self/root/proc/self/root/proc/self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/ |
Upload File : |
import sys from collections.abc import Sequence, Iterator, Callable, Iterable from typing import ( Literal as L, Any, TypeVar, overload, Protocol, SupportsIndex, SupportsInt, ) if sys.version_info >= (3, 10): from typing import TypeGuard else: from typing_extensions import TypeGuard from numpy import ( vectorize as vectorize, ufunc, generic, floating, complexfloating, intp, float64, complex128, timedelta64, datetime64, object_, _OrderKACF, ) from numpy._typing import ( NDArray, ArrayLike, DTypeLike, _ShapeLike, _ScalarLike_co, _DTypeLike, _ArrayLike, _ArrayLikeInt_co, _ArrayLikeFloat_co, _ArrayLikeComplex_co, _ArrayLikeTD64_co, _ArrayLikeDT64_co, _ArrayLikeObject_co, _FloatLike_co, _ComplexLike_co, ) from numpy.core.function_base import ( add_newdoc as add_newdoc, ) from numpy.core.multiarray import ( add_docstring as add_docstring, bincount as bincount, ) from numpy.core.umath import _add_newdoc_ufunc _T = TypeVar("_T") _T_co = TypeVar("_T_co", covariant=True) _SCT = TypeVar("_SCT", bound=generic) _ArrayType = TypeVar("_ArrayType", bound=NDArray[Any]) _2Tuple = tuple[_T, _T] class _TrimZerosSequence(Protocol[_T_co]): def __len__(self) -> int: ... def __getitem__(self, key: slice, /) -> _T_co: ... def __iter__(self) -> Iterator[Any]: ... class _SupportsWriteFlush(Protocol): def write(self, s: str, /) -> object: ... def flush(self) -> object: ... __all__: list[str] # NOTE: This is in reality a re-export of `np.core.umath._add_newdoc_ufunc` def add_newdoc_ufunc(ufunc: ufunc, new_docstring: str, /) -> None: ... @overload def rot90( m: _ArrayLike[_SCT], k: int = ..., axes: tuple[int, int] = ..., ) -> NDArray[_SCT]: ... @overload def rot90( m: ArrayLike, k: int = ..., axes: tuple[int, int] = ..., ) -> NDArray[Any]: ... @overload def flip(m: _SCT, axis: None = ...) -> _SCT: ... @overload def flip(m: _ScalarLike_co, axis: None = ...) -> Any: ... @overload def flip(m: _ArrayLike[_SCT], axis: None | _ShapeLike = ...) -> NDArray[_SCT]: ... @overload def flip(m: ArrayLike, axis: None | _ShapeLike = ...) -> NDArray[Any]: ... def iterable(y: object) -> TypeGuard[Iterable[Any]]: ... @overload def average( a: _ArrayLikeFloat_co, axis: None = ..., weights: None | _ArrayLikeFloat_co= ..., returned: L[False] = ..., keepdims: L[False] = ..., ) -> floating[Any]: ... @overload def average( a: _ArrayLikeComplex_co, axis: None = ..., weights: None | _ArrayLikeComplex_co = ..., returned: L[False] = ..., keepdims: L[False] = ..., ) -> complexfloating[Any, Any]: ... @overload def average( a: _ArrayLikeObject_co, axis: None = ..., weights: None | Any = ..., returned: L[False] = ..., keepdims: L[False] = ..., ) -> Any: ... @overload def average( a: _ArrayLikeFloat_co, axis: None = ..., weights: None | _ArrayLikeFloat_co= ..., returned: L[True] = ..., keepdims: L[False] = ..., ) -> _2Tuple[floating[Any]]: ... @overload def average( a: _ArrayLikeComplex_co, axis: None = ..., weights: None | _ArrayLikeComplex_co = ..., returned: L[True] = ..., keepdims: L[False] = ..., ) -> _2Tuple[complexfloating[Any, Any]]: ... @overload def average( a: _ArrayLikeObject_co, axis: None = ..., weights: None | Any = ..., returned: L[True] = ..., keepdims: L[False] = ..., ) -> _2Tuple[Any]: ... @overload def average( a: _ArrayLikeComplex_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., weights: None | Any = ..., returned: L[False] = ..., keepdims: bool = ..., ) -> Any: ... @overload def average( a: _ArrayLikeComplex_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., weights: None | Any = ..., returned: L[True] = ..., keepdims: bool = ..., ) -> _2Tuple[Any]: ... @overload def asarray_chkfinite( a: _ArrayLike[_SCT], dtype: None = ..., order: _OrderKACF = ..., ) -> NDArray[_SCT]: ... @overload def asarray_chkfinite( a: object, dtype: None = ..., order: _OrderKACF = ..., ) -> NDArray[Any]: ... @overload def asarray_chkfinite( a: Any, dtype: _DTypeLike[_SCT], order: _OrderKACF = ..., ) -> NDArray[_SCT]: ... @overload def asarray_chkfinite( a: Any, dtype: DTypeLike, order: _OrderKACF = ..., ) -> NDArray[Any]: ... # TODO: Use PEP 612 `ParamSpec` once mypy supports `Concatenate` # xref python/mypy#8645 @overload def piecewise( x: _ArrayLike[_SCT], condlist: ArrayLike, funclist: Sequence[Any | Callable[..., Any]], *args: Any, **kw: Any, ) -> NDArray[_SCT]: ... @overload def piecewise( x: ArrayLike, condlist: ArrayLike, funclist: Sequence[Any | Callable[..., Any]], *args: Any, **kw: Any, ) -> NDArray[Any]: ... def select( condlist: Sequence[ArrayLike], choicelist: Sequence[ArrayLike], default: ArrayLike = ..., ) -> NDArray[Any]: ... @overload def copy( a: _ArrayType, order: _OrderKACF, subok: L[True], ) -> _ArrayType: ... @overload def copy( a: _ArrayType, order: _OrderKACF = ..., *, subok: L[True], ) -> _ArrayType: ... @overload def copy( a: _ArrayLike[_SCT], order: _OrderKACF = ..., subok: L[False] = ..., ) -> NDArray[_SCT]: ... @overload def copy( a: ArrayLike, order: _OrderKACF = ..., subok: L[False] = ..., ) -> NDArray[Any]: ... def gradient( f: ArrayLike, *varargs: ArrayLike, axis: None | _ShapeLike = ..., edge_order: L[1, 2] = ..., ) -> Any: ... @overload def diff( a: _T, n: L[0], axis: SupportsIndex = ..., prepend: ArrayLike = ..., append: ArrayLike = ..., ) -> _T: ... @overload def diff( a: ArrayLike, n: int = ..., axis: SupportsIndex = ..., prepend: ArrayLike = ..., append: ArrayLike = ..., ) -> NDArray[Any]: ... @overload def interp( x: _ArrayLikeFloat_co, xp: _ArrayLikeFloat_co, fp: _ArrayLikeFloat_co, left: None | _FloatLike_co = ..., right: None | _FloatLike_co = ..., period: None | _FloatLike_co = ..., ) -> NDArray[float64]: ... @overload def interp( x: _ArrayLikeFloat_co, xp: _ArrayLikeFloat_co, fp: _ArrayLikeComplex_co, left: None | _ComplexLike_co = ..., right: None | _ComplexLike_co = ..., period: None | _FloatLike_co = ..., ) -> NDArray[complex128]: ... @overload def angle(z: _ComplexLike_co, deg: bool = ...) -> floating[Any]: ... @overload def angle(z: object_, deg: bool = ...) -> Any: ... @overload def angle(z: _ArrayLikeComplex_co, deg: bool = ...) -> NDArray[floating[Any]]: ... @overload def angle(z: _ArrayLikeObject_co, deg: bool = ...) -> NDArray[object_]: ... @overload def unwrap( p: _ArrayLikeFloat_co, discont: None | float = ..., axis: int = ..., *, period: float = ..., ) -> NDArray[floating[Any]]: ... @overload def unwrap( p: _ArrayLikeObject_co, discont: None | float = ..., axis: int = ..., *, period: float = ..., ) -> NDArray[object_]: ... def sort_complex(a: ArrayLike) -> NDArray[complexfloating[Any, Any]]: ... def trim_zeros( filt: _TrimZerosSequence[_T], trim: L["f", "b", "fb", "bf"] = ..., ) -> _T: ... @overload def extract(condition: ArrayLike, arr: _ArrayLike[_SCT]) -> NDArray[_SCT]: ... @overload def extract(condition: ArrayLike, arr: ArrayLike) -> NDArray[Any]: ... def place(arr: NDArray[Any], mask: ArrayLike, vals: Any) -> None: ... def disp( mesg: object, device: None | _SupportsWriteFlush = ..., linefeed: bool = ..., ) -> None: ... @overload def cov( m: _ArrayLikeFloat_co, y: None | _ArrayLikeFloat_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: None = ..., ) -> NDArray[floating[Any]]: ... @overload def cov( m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: None = ..., ) -> NDArray[complexfloating[Any, Any]]: ... @overload def cov( m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: _DTypeLike[_SCT], ) -> NDArray[_SCT]: ... @overload def cov( m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: DTypeLike, ) -> NDArray[Any]: ... # NOTE `bias` and `ddof` have been deprecated @overload def corrcoef( m: _ArrayLikeFloat_co, y: None | _ArrayLikeFloat_co = ..., rowvar: bool = ..., *, dtype: None = ..., ) -> NDArray[floating[Any]]: ... @overload def corrcoef( m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., *, dtype: None = ..., ) -> NDArray[complexfloating[Any, Any]]: ... @overload def corrcoef( m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., *, dtype: _DTypeLike[_SCT], ) -> NDArray[_SCT]: ... @overload def corrcoef( m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., *, dtype: DTypeLike, ) -> NDArray[Any]: ... def blackman(M: _FloatLike_co) -> NDArray[floating[Any]]: ... def bartlett(M: _FloatLike_co) -> NDArray[floating[Any]]: ... def hanning(M: _FloatLike_co) -> NDArray[floating[Any]]: ... def hamming(M: _FloatLike_co) -> NDArray[floating[Any]]: ... def i0(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... def kaiser( M: _FloatLike_co, beta: _FloatLike_co, ) -> NDArray[floating[Any]]: ... @overload def sinc(x: _FloatLike_co) -> floating[Any]: ... @overload def sinc(x: _ComplexLike_co) -> complexfloating[Any, Any]: ... @overload def sinc(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... @overload def sinc(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # NOTE: Deprecated # def msort(a: ArrayLike) -> NDArray[Any]: ... @overload def median( a: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ..., ) -> floating[Any]: ... @overload def median( a: _ArrayLikeComplex_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ..., ) -> complexfloating[Any, Any]: ... @overload def median( a: _ArrayLikeTD64_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ..., ) -> timedelta64: ... @overload def median( a: _ArrayLikeObject_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ..., ) -> Any: ... @overload def median( a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., out: None = ..., overwrite_input: bool = ..., keepdims: bool = ..., ) -> Any: ... @overload def median( a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., out: _ArrayType = ..., overwrite_input: bool = ..., keepdims: bool = ..., ) -> _ArrayType: ... _MethodKind = L[ "inverted_cdf", "averaged_inverted_cdf", "closest_observation", "interpolated_inverted_cdf", "hazen", "weibull", "linear", "median_unbiased", "normal_unbiased", "lower", "higher", "midpoint", "nearest", ] @overload def percentile( a: _ArrayLikeFloat_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ..., ) -> floating[Any]: ... @overload def percentile( a: _ArrayLikeComplex_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ..., ) -> complexfloating[Any, Any]: ... @overload def percentile( a: _ArrayLikeTD64_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ..., ) -> timedelta64: ... @overload def percentile( a: _ArrayLikeDT64_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ..., ) -> datetime64: ... @overload def percentile( a: _ArrayLikeObject_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ..., ) -> Any: ... @overload def percentile( a: _ArrayLikeFloat_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ..., ) -> NDArray[floating[Any]]: ... @overload def percentile( a: _ArrayLikeComplex_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ..., ) -> NDArray[complexfloating[Any, Any]]: ... @overload def percentile( a: _ArrayLikeTD64_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ..., ) -> NDArray[timedelta64]: ... @overload def percentile( a: _ArrayLikeDT64_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ..., ) -> NDArray[datetime64]: ... @overload def percentile( a: _ArrayLikeObject_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ..., ) -> NDArray[object_]: ... @overload def percentile( a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, q: _ArrayLikeFloat_co, axis: None | _ShapeLike = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: bool = ..., ) -> Any: ... @overload def percentile( a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, q: _ArrayLikeFloat_co, axis: None | _ShapeLike = ..., out: _ArrayType = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: bool = ..., ) -> _ArrayType: ... # NOTE: Not an alias, but they do have identical signatures # (that we can reuse) quantile = percentile # TODO: Returns a scalar for <= 1D array-likes; returns an ndarray otherwise def trapz( y: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, x: None | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co = ..., dx: float = ..., axis: SupportsIndex = ..., ) -> Any: ... def meshgrid( *xi: ArrayLike, copy: bool = ..., sparse: bool = ..., indexing: L["xy", "ij"] = ..., ) -> list[NDArray[Any]]: ... @overload def delete( arr: _ArrayLike[_SCT], obj: slice | _ArrayLikeInt_co, axis: None | SupportsIndex = ..., ) -> NDArray[_SCT]: ... @overload def delete( arr: ArrayLike, obj: slice | _ArrayLikeInt_co, axis: None | SupportsIndex = ..., ) -> NDArray[Any]: ... @overload def insert( arr: _ArrayLike[_SCT], obj: slice | _ArrayLikeInt_co, values: ArrayLike, axis: None | SupportsIndex = ..., ) -> NDArray[_SCT]: ... @overload def insert( arr: ArrayLike, obj: slice | _ArrayLikeInt_co, values: ArrayLike, axis: None | SupportsIndex = ..., ) -> NDArray[Any]: ... def append( arr: ArrayLike, values: ArrayLike, axis: None | SupportsIndex = ..., ) -> NDArray[Any]: ... @overload def digitize( x: _FloatLike_co, bins: _ArrayLikeFloat_co, right: bool = ..., ) -> intp: ... @overload def digitize( x: _ArrayLikeFloat_co, bins: _ArrayLikeFloat_co, right: bool = ..., ) -> NDArray[intp]: ...