Server IP : 66.29.132.122 / Your IP : 3.149.214.52 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/proc/self/root/proc/thread-self/root/proc/self/root/proc/self/root/proc/self/root/proc/self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/ |
Upload File : |
from collections.abc import Iterable from typing import Any, TypeVar, overload, SupportsIndex from numpy import generic from numpy._typing import ( NDArray, ArrayLike, _ShapeLike, _Shape, _ArrayLike ) _SCT = TypeVar("_SCT", bound=generic) __all__: list[str] class DummyArray: __array_interface__: dict[str, Any] base: None | NDArray[Any] def __init__( self, interface: dict[str, Any], base: None | NDArray[Any] = ..., ) -> None: ... @overload def as_strided( x: _ArrayLike[_SCT], shape: None | Iterable[int] = ..., strides: None | Iterable[int] = ..., subok: bool = ..., writeable: bool = ..., ) -> NDArray[_SCT]: ... @overload def as_strided( x: ArrayLike, shape: None | Iterable[int] = ..., strides: None | Iterable[int] = ..., subok: bool = ..., writeable: bool = ..., ) -> NDArray[Any]: ... @overload def sliding_window_view( x: _ArrayLike[_SCT], window_shape: int | Iterable[int], axis: None | SupportsIndex = ..., *, subok: bool = ..., writeable: bool = ..., ) -> NDArray[_SCT]: ... @overload def sliding_window_view( x: ArrayLike, window_shape: int | Iterable[int], axis: None | SupportsIndex = ..., *, subok: bool = ..., writeable: bool = ..., ) -> NDArray[Any]: ... @overload def broadcast_to( array: _ArrayLike[_SCT], shape: int | Iterable[int], subok: bool = ..., ) -> NDArray[_SCT]: ... @overload def broadcast_to( array: ArrayLike, shape: int | Iterable[int], subok: bool = ..., ) -> NDArray[Any]: ... def broadcast_shapes(*args: _ShapeLike) -> _Shape: ... def broadcast_arrays( *args: ArrayLike, subok: bool = ..., ) -> list[NDArray[Any]]: ...