Server IP : 66.29.132.122 / Your IP : 18.225.195.190 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/proc/self/root/proc/thread-self/root/proc/self/root/proc/self/root/proc/self/root/proc/self/root/opt/alt/python37/lib/python3.7/site-packages/future/builtins/ |
Upload File : |
''' This module provides a newsuper() function in Python 2 that mimics the behaviour of super() in Python 3. It is designed to be used as follows: from __future__ import division, absolute_import, print_function from future.builtins import super And then, for example: class VerboseList(list): def append(self, item): print('Adding an item') super().append(item) # new simpler super() function Importing this module on Python 3 has no effect. This is based on (i.e. almost identical to) Ryan Kelly's magicsuper module here: https://github.com/rfk/magicsuper.git Excerpts from Ryan's docstring: "Of course, you can still explicitly pass in the arguments if you want to do something strange. Sometimes you really do want that, e.g. to skip over some classes in the method resolution order. "How does it work? By inspecting the calling frame to determine the function object being executed and the object on which it's being called, and then walking the object's __mro__ chain to find out where that function was defined. Yuck, but it seems to work..." ''' from __future__ import absolute_import import sys from types import FunctionType from future.utils import PY3, PY26 _builtin_super = super _SENTINEL = object() def newsuper(typ=_SENTINEL, type_or_obj=_SENTINEL, framedepth=1): '''Like builtin super(), but capable of magic. This acts just like the builtin super() function, but if called without any arguments it attempts to infer them at runtime. ''' # Infer the correct call if used without arguments. if typ is _SENTINEL: # We'll need to do some frame hacking. f = sys._getframe(framedepth) try: # Get the function's first positional argument. type_or_obj = f.f_locals[f.f_code.co_varnames[0]] except (IndexError, KeyError,): raise RuntimeError('super() used in a function with no args') try: # Get the MRO so we can crawl it. mro = type_or_obj.__mro__ except (AttributeError, RuntimeError): # see issue #160 try: mro = type_or_obj.__class__.__mro__ except AttributeError: raise RuntimeError('super() used with a non-newstyle class') # A ``for...else`` block? Yes! It's odd, but useful. # If unfamiliar with for...else, see: # # http://psung.blogspot.com/2007/12/for-else-in-python.html for typ in mro: # Find the class that owns the currently-executing method. for meth in typ.__dict__.values(): # Drill down through any wrappers to the underlying func. # This handles e.g. classmethod() and staticmethod(). try: while not isinstance(meth,FunctionType): if isinstance(meth, property): # Calling __get__ on the property will invoke # user code which might throw exceptions or have # side effects meth = meth.fget else: try: meth = meth.__func__ except AttributeError: meth = meth.__get__(type_or_obj, typ) except (AttributeError, TypeError): continue if meth.func_code is f.f_code: break # Aha! Found you. else: continue # Not found! Move onto the next class in MRO. break # Found! Break out of the search loop. else: raise RuntimeError('super() called outside a method') # Dispatch to builtin super(). if type_or_obj is not _SENTINEL: return _builtin_super(typ, type_or_obj) return _builtin_super(typ) def superm(*args, **kwds): f = sys._getframe(1) nm = f.f_code.co_name return getattr(newsuper(framedepth=2),nm)(*args, **kwds) __all__ = ['newsuper']