Server IP : 66.29.132.122 / Your IP : 3.15.22.24 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/proc/self/root/proc/thread-self/root/proc/self/root/proc/self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/random/tests/ |
Upload File : |
import hashlib import pickle import sys import warnings import numpy as np import pytest from numpy.testing import ( assert_, assert_raises, assert_equal, assert_warns, assert_no_warnings, assert_array_equal, assert_array_almost_equal, suppress_warnings, IS_WASM ) from numpy.random import MT19937, PCG64 from numpy import random INT_FUNCS = {'binomial': (100.0, 0.6), 'geometric': (.5,), 'hypergeometric': (20, 20, 10), 'logseries': (.5,), 'multinomial': (20, np.ones(6) / 6.0), 'negative_binomial': (100, .5), 'poisson': (10.0,), 'zipf': (2,), } if np.iinfo(int).max < 2**32: # Windows and some 32-bit platforms, e.g., ARM INT_FUNC_HASHES = {'binomial': '2fbead005fc63942decb5326d36a1f32fe2c9d32c904ee61e46866b88447c263', 'logseries': '23ead5dcde35d4cfd4ef2c105e4c3d43304b45dc1b1444b7823b9ee4fa144ebb', 'geometric': '0d764db64f5c3bad48c8c33551c13b4d07a1e7b470f77629bef6c985cac76fcf', 'hypergeometric': '7b59bf2f1691626c5815cdcd9a49e1dd68697251d4521575219e4d2a1b8b2c67', 'multinomial': 'd754fa5b92943a38ec07630de92362dd2e02c43577fc147417dc5b9db94ccdd3', 'negative_binomial': '8eb216f7cb2a63cf55605422845caaff002fddc64a7dc8b2d45acd477a49e824', 'poisson': '70c891d76104013ebd6f6bcf30d403a9074b886ff62e4e6b8eb605bf1a4673b7', 'zipf': '01f074f97517cd5d21747148ac6ca4074dde7fcb7acbaec0a936606fecacd93f', } else: INT_FUNC_HASHES = {'binomial': '8626dd9d052cb608e93d8868de0a7b347258b199493871a1dc56e2a26cacb112', 'geometric': '8edd53d272e49c4fc8fbbe6c7d08d563d62e482921f3131d0a0e068af30f0db9', 'hypergeometric': '83496cc4281c77b786c9b7ad88b74d42e01603a55c60577ebab81c3ba8d45657', 'logseries': '65878a38747c176bc00e930ebafebb69d4e1e16cd3a704e264ea8f5e24f548db', 'multinomial': '7a984ae6dca26fd25374479e118b22f55db0aedccd5a0f2584ceada33db98605', 'negative_binomial': 'd636d968e6a24ae92ab52fe11c46ac45b0897e98714426764e820a7d77602a61', 'poisson': '956552176f77e7c9cb20d0118fc9cf690be488d790ed4b4c4747b965e61b0bb4', 'zipf': 'f84ba7feffda41e606e20b28dfc0f1ea9964a74574513d4a4cbc98433a8bfa45', } @pytest.fixture(scope='module', params=INT_FUNCS) def int_func(request): return (request.param, INT_FUNCS[request.param], INT_FUNC_HASHES[request.param]) @pytest.fixture def restore_singleton_bitgen(): """Ensures that the singleton bitgen is restored after a test""" orig_bitgen = np.random.get_bit_generator() yield np.random.set_bit_generator(orig_bitgen) def assert_mt19937_state_equal(a, b): assert_equal(a['bit_generator'], b['bit_generator']) assert_array_equal(a['state']['key'], b['state']['key']) assert_array_equal(a['state']['pos'], b['state']['pos']) assert_equal(a['has_gauss'], b['has_gauss']) assert_equal(a['gauss'], b['gauss']) class TestSeed: def test_scalar(self): s = random.RandomState(0) assert_equal(s.randint(1000), 684) s = random.RandomState(4294967295) assert_equal(s.randint(1000), 419) def test_array(self): s = random.RandomState(range(10)) assert_equal(s.randint(1000), 468) s = random.RandomState(np.arange(10)) assert_equal(s.randint(1000), 468) s = random.RandomState([0]) assert_equal(s.randint(1000), 973) s = random.RandomState([4294967295]) assert_equal(s.randint(1000), 265) def test_invalid_scalar(self): # seed must be an unsigned 32 bit integer assert_raises(TypeError, random.RandomState, -0.5) assert_raises(ValueError, random.RandomState, -1) def test_invalid_array(self): # seed must be an unsigned 32 bit integer assert_raises(TypeError, random.RandomState, [-0.5]) assert_raises(ValueError, random.RandomState, [-1]) assert_raises(ValueError, random.RandomState, [4294967296]) assert_raises(ValueError, random.RandomState, [1, 2, 4294967296]) assert_raises(ValueError, random.RandomState, [1, -2, 4294967296]) def test_invalid_array_shape(self): # gh-9832 assert_raises(ValueError, random.RandomState, np.array([], dtype=np.int64)) assert_raises(ValueError, random.RandomState, [[1, 2, 3]]) assert_raises(ValueError, random.RandomState, [[1, 2, 3], [4, 5, 6]]) def test_cannot_seed(self): rs = random.RandomState(PCG64(0)) with assert_raises(TypeError): rs.seed(1234) def test_invalid_initialization(self): assert_raises(ValueError, random.RandomState, MT19937) class TestBinomial: def test_n_zero(self): # Tests the corner case of n == 0 for the binomial distribution. # binomial(0, p) should be zero for any p in [0, 1]. # This test addresses issue #3480. zeros = np.zeros(2, dtype='int') for p in [0, .5, 1]: assert_(random.binomial(0, p) == 0) assert_array_equal(random.binomial(zeros, p), zeros) def test_p_is_nan(self): # Issue #4571. assert_raises(ValueError, random.binomial, 1, np.nan) class TestMultinomial: def test_basic(self): random.multinomial(100, [0.2, 0.8]) def test_zero_probability(self): random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0]) def test_int_negative_interval(self): assert_(-5 <= random.randint(-5, -1) < -1) x = random.randint(-5, -1, 5) assert_(np.all(-5 <= x)) assert_(np.all(x < -1)) def test_size(self): # gh-3173 p = [0.5, 0.5] assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) assert_equal(random.multinomial(1, p, np.array((2, 2))).shape, (2, 2, 2)) assert_raises(TypeError, random.multinomial, 1, p, float(1)) def test_invalid_prob(self): assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2]) assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9]) def test_invalid_n(self): assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2]) def test_p_non_contiguous(self): p = np.arange(15.) p /= np.sum(p[1::3]) pvals = p[1::3] random.seed(1432985819) non_contig = random.multinomial(100, pvals=pvals) random.seed(1432985819) contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals)) assert_array_equal(non_contig, contig) def test_multinomial_pvals_float32(self): x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32) pvals = x / x.sum() match = r"[\w\s]*pvals array is cast to 64-bit floating" with pytest.raises(ValueError, match=match): random.multinomial(1, pvals) class TestSetState: def setup_method(self): self.seed = 1234567890 self.random_state = random.RandomState(self.seed) self.state = self.random_state.get_state() def test_basic(self): old = self.random_state.tomaxint(16) self.random_state.set_state(self.state) new = self.random_state.tomaxint(16) assert_(np.all(old == new)) def test_gaussian_reset(self): # Make sure the cached every-other-Gaussian is reset. old = self.random_state.standard_normal(size=3) self.random_state.set_state(self.state) new = self.random_state.standard_normal(size=3) assert_(np.all(old == new)) def test_gaussian_reset_in_media_res(self): # When the state is saved with a cached Gaussian, make sure the # cached Gaussian is restored. self.random_state.standard_normal() state = self.random_state.get_state() old = self.random_state.standard_normal(size=3) self.random_state.set_state(state) new = self.random_state.standard_normal(size=3) assert_(np.all(old == new)) def test_backwards_compatibility(self): # Make sure we can accept old state tuples that do not have the # cached Gaussian value. old_state = self.state[:-2] x1 = self.random_state.standard_normal(size=16) self.random_state.set_state(old_state) x2 = self.random_state.standard_normal(size=16) self.random_state.set_state(self.state) x3 = self.random_state.standard_normal(size=16) assert_(np.all(x1 == x2)) assert_(np.all(x1 == x3)) def test_negative_binomial(self): # Ensure that the negative binomial results take floating point # arguments without truncation. self.random_state.negative_binomial(0.5, 0.5) def test_get_state_warning(self): rs = random.RandomState(PCG64()) with suppress_warnings() as sup: w = sup.record(RuntimeWarning) state = rs.get_state() assert_(len(w) == 1) assert isinstance(state, dict) assert state['bit_generator'] == 'PCG64' def test_invalid_legacy_state_setting(self): state = self.random_state.get_state() new_state = ('Unknown', ) + state[1:] assert_raises(ValueError, self.random_state.set_state, new_state) assert_raises(TypeError, self.random_state.set_state, np.array(new_state, dtype=object)) state = self.random_state.get_state(legacy=False) del state['bit_generator'] assert_raises(ValueError, self.random_state.set_state, state) def test_pickle(self): self.random_state.seed(0) self.random_state.random_sample(100) self.random_state.standard_normal() pickled = self.random_state.get_state(legacy=False) assert_equal(pickled['has_gauss'], 1) rs_unpick = pickle.loads(pickle.dumps(self.random_state)) unpickled = rs_unpick.get_state(legacy=False) assert_mt19937_state_equal(pickled, unpickled) def test_state_setting(self): attr_state = self.random_state.__getstate__() self.random_state.standard_normal() self.random_state.__setstate__(attr_state) state = self.random_state.get_state(legacy=False) assert_mt19937_state_equal(attr_state, state) def test_repr(self): assert repr(self.random_state).startswith('RandomState(MT19937)') class TestRandint: rfunc = random.randint # valid integer/boolean types itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.int64, np.uint64] def test_unsupported_type(self): assert_raises(TypeError, self.rfunc, 1, dtype=float) def test_bounds_checking(self): for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt) assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt) assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt) assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt) def test_rng_zero_and_extremes(self): for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 tgt = ubnd - 1 assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) tgt = lbnd assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) tgt = (lbnd + ubnd)//2 assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) def test_full_range(self): # Test for ticket #1690 for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 try: self.rfunc(lbnd, ubnd, dtype=dt) except Exception as e: raise AssertionError("No error should have been raised, " "but one was with the following " "message:\n\n%s" % str(e)) def test_in_bounds_fuzz(self): # Don't use fixed seed random.seed() for dt in self.itype[1:]: for ubnd in [4, 8, 16]: vals = self.rfunc(2, ubnd, size=2**16, dtype=dt) assert_(vals.max() < ubnd) assert_(vals.min() >= 2) vals = self.rfunc(0, 2, size=2**16, dtype=np.bool_) assert_(vals.max() < 2) assert_(vals.min() >= 0) def test_repeatability(self): # We use a sha256 hash of generated sequences of 1000 samples # in the range [0, 6) for all but bool, where the range # is [0, 2). Hashes are for little endian numbers. tgt = {'bool': '509aea74d792fb931784c4b0135392c65aec64beee12b0cc167548a2c3d31e71', 'int16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', 'int32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', 'int64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', 'int8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404', 'uint16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', 'uint32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', 'uint64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', 'uint8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404'} for dt in self.itype[1:]: random.seed(1234) # view as little endian for hash if sys.byteorder == 'little': val = self.rfunc(0, 6, size=1000, dtype=dt) else: val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap() res = hashlib.sha256(val.view(np.int8)).hexdigest() assert_(tgt[np.dtype(dt).name] == res) # bools do not depend on endianness random.seed(1234) val = self.rfunc(0, 2, size=1000, dtype=bool).view(np.int8) res = hashlib.sha256(val).hexdigest() assert_(tgt[np.dtype(bool).name] == res) @pytest.mark.skipif(np.iinfo('l').max < 2**32, reason='Cannot test with 32-bit C long') def test_repeatability_32bit_boundary_broadcasting(self): desired = np.array([[[3992670689, 2438360420, 2557845020], [4107320065, 4142558326, 3216529513], [1605979228, 2807061240, 665605495]], [[3211410639, 4128781000, 457175120], [1712592594, 1282922662, 3081439808], [3997822960, 2008322436, 1563495165]], [[1398375547, 4269260146, 115316740], [3414372578, 3437564012, 2112038651], [3572980305, 2260248732, 3908238631]], [[2561372503, 223155946, 3127879445], [ 441282060, 3514786552, 2148440361], [1629275283, 3479737011, 3003195987]], [[ 412181688, 940383289, 3047321305], [2978368172, 764731833, 2282559898], [ 105711276, 720447391, 3596512484]]]) for size in [None, (5, 3, 3)]: random.seed(12345) x = self.rfunc([[-1], [0], [1]], [2**32 - 1, 2**32, 2**32 + 1], size=size) assert_array_equal(x, desired if size is not None else desired[0]) def test_int64_uint64_corner_case(self): # When stored in Numpy arrays, `lbnd` is casted # as np.int64, and `ubnd` is casted as np.uint64. # Checking whether `lbnd` >= `ubnd` used to be # done solely via direct comparison, which is incorrect # because when Numpy tries to compare both numbers, # it casts both to np.float64 because there is # no integer superset of np.int64 and np.uint64. However, # `ubnd` is too large to be represented in np.float64, # causing it be round down to np.iinfo(np.int64).max, # leading to a ValueError because `lbnd` now equals # the new `ubnd`. dt = np.int64 tgt = np.iinfo(np.int64).max lbnd = np.int64(np.iinfo(np.int64).max) ubnd = np.uint64(np.iinfo(np.int64).max + 1) # None of these function calls should # generate a ValueError now. actual = random.randint(lbnd, ubnd, dtype=dt) assert_equal(actual, tgt) def test_respect_dtype_singleton(self): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_equal(sample.dtype, np.dtype(dt)) for dt in (bool, int, np.compat.long): lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 # gh-7284: Ensure that we get Python data types sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_(not hasattr(sample, 'dtype')) assert_equal(type(sample), dt) class TestRandomDist: # Make sure the random distribution returns the correct value for a # given seed def setup_method(self): self.seed = 1234567890 def test_rand(self): random.seed(self.seed) actual = random.rand(3, 2) desired = np.array([[0.61879477158567997, 0.59162362775974664], [0.88868358904449662, 0.89165480011560816], [0.4575674820298663, 0.7781880808593471]]) assert_array_almost_equal(actual, desired, decimal=15) def test_rand_singleton(self): random.seed(self.seed) actual = random.rand() desired = 0.61879477158567997 assert_array_almost_equal(actual, desired, decimal=15) def test_randn(self): random.seed(self.seed) actual = random.randn(3, 2) desired = np.array([[1.34016345771863121, 1.73759122771936081], [1.498988344300628, -0.2286433324536169], [2.031033998682787, 2.17032494605655257]]) assert_array_almost_equal(actual, desired, decimal=15) random.seed(self.seed) actual = random.randn() assert_array_almost_equal(actual, desired[0, 0], decimal=15) def test_randint(self): random.seed(self.seed) actual = random.randint(-99, 99, size=(3, 2)) desired = np.array([[31, 3], [-52, 41], [-48, -66]]) assert_array_equal(actual, desired) def test_random_integers(self): random.seed(self.seed) with suppress_warnings() as sup: w = sup.record(DeprecationWarning) actual = random.random_integers(-99, 99, size=(3, 2)) assert_(len(w) == 1) desired = np.array([[31, 3], [-52, 41], [-48, -66]]) assert_array_equal(actual, desired) random.seed(self.seed) with suppress_warnings() as sup: w = sup.record(DeprecationWarning) actual = random.random_integers(198, size=(3, 2)) assert_(len(w) == 1) assert_array_equal(actual, desired + 100) def test_tomaxint(self): random.seed(self.seed) rs = random.RandomState(self.seed) actual = rs.tomaxint(size=(3, 2)) if np.iinfo(int).max == 2147483647: desired = np.array([[1328851649, 731237375], [1270502067, 320041495], [1908433478, 499156889]], dtype=np.int64) else: desired = np.array([[5707374374421908479, 5456764827585442327], [8196659375100692377, 8224063923314595285], [4220315081820346526, 7177518203184491332]], dtype=np.int64) assert_equal(actual, desired) rs.seed(self.seed) actual = rs.tomaxint() assert_equal(actual, desired[0, 0]) def test_random_integers_max_int(self): # Tests whether random_integers can generate the # maximum allowed Python int that can be converted # into a C long. Previous implementations of this # method have thrown an OverflowError when attempting # to generate this integer. with suppress_warnings() as sup: w = sup.record(DeprecationWarning) actual = random.random_integers(np.iinfo('l').max, np.iinfo('l').max) assert_(len(w) == 1) desired = np.iinfo('l').max assert_equal(actual, desired) with suppress_warnings() as sup: w = sup.record(DeprecationWarning) typer = np.dtype('l').type actual = random.random_integers(typer(np.iinfo('l').max), typer(np.iinfo('l').max)) assert_(len(w) == 1) assert_equal(actual, desired) def test_random_integers_deprecated(self): with warnings.catch_warnings(): warnings.simplefilter("error", DeprecationWarning) # DeprecationWarning raised with high == None assert_raises(DeprecationWarning, random.random_integers, np.iinfo('l').max) # DeprecationWarning raised with high != None assert_raises(DeprecationWarning, random.random_integers, np.iinfo('l').max, np.iinfo('l').max) def test_random_sample(self): random.seed(self.seed) actual = random.random_sample((3, 2)) desired = np.array([[0.61879477158567997, 0.59162362775974664], [0.88868358904449662, 0.89165480011560816], [0.4575674820298663, 0.7781880808593471]]) assert_array_almost_equal(actual, desired, decimal=15) random.seed(self.seed) actual = random.random_sample() assert_array_almost_equal(actual, desired[0, 0], decimal=15) def test_choice_uniform_replace(self): random.seed(self.seed) actual = random.choice(4, 4) desired = np.array([2, 3, 2, 3]) assert_array_equal(actual, desired) def test_choice_nonuniform_replace(self): random.seed(self.seed) actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1]) desired = np.array([1, 1, 2, 2]) assert_array_equal(actual, desired) def test_choice_uniform_noreplace(self): random.seed(self.seed) actual = random.choice(4, 3, replace=False) desired = np.array([0, 1, 3]) assert_array_equal(actual, desired) def test_choice_nonuniform_noreplace(self): random.seed(self.seed) actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1]) desired = np.array([2, 3, 1]) assert_array_equal(actual, desired) def test_choice_noninteger(self): random.seed(self.seed) actual = random.choice(['a', 'b', 'c', 'd'], 4) desired = np.array(['c', 'd', 'c', 'd']) assert_array_equal(actual, desired) def test_choice_exceptions(self): sample = random.choice assert_raises(ValueError, sample, -1, 3) assert_raises(ValueError, sample, 3., 3) assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3) assert_raises(ValueError, sample, [], 3) assert_raises(ValueError, sample, [1, 2, 3, 4], 3, p=[[0.25, 0.25], [0.25, 0.25]]) assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2]) assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1]) assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4]) assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False) # gh-13087 assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False) assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False) assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False) assert_raises(ValueError, sample, [1, 2, 3], 2, replace=False, p=[1, 0, 0]) def test_choice_return_shape(self): p = [0.1, 0.9] # Check scalar assert_(np.isscalar(random.choice(2, replace=True))) assert_(np.isscalar(random.choice(2, replace=False))) assert_(np.isscalar(random.choice(2, replace=True, p=p))) assert_(np.isscalar(random.choice(2, replace=False, p=p))) assert_(np.isscalar(random.choice([1, 2], replace=True))) assert_(random.choice([None], replace=True) is None) a = np.array([1, 2]) arr = np.empty(1, dtype=object) arr[0] = a assert_(random.choice(arr, replace=True) is a) # Check 0-d array s = tuple() assert_(not np.isscalar(random.choice(2, s, replace=True))) assert_(not np.isscalar(random.choice(2, s, replace=False))) assert_(not np.isscalar(random.choice(2, s, replace=True, p=p))) assert_(not np.isscalar(random.choice(2, s, replace=False, p=p))) assert_(not np.isscalar(random.choice([1, 2], s, replace=True))) assert_(random.choice([None], s, replace=True).ndim == 0) a = np.array([1, 2]) arr = np.empty(1, dtype=object) arr[0] = a assert_(random.choice(arr, s, replace=True).item() is a) # Check multi dimensional array s = (2, 3) p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2] assert_equal(random.choice(6, s, replace=True).shape, s) assert_equal(random.choice(6, s, replace=False).shape, s) assert_equal(random.choice(6, s, replace=True, p=p).shape, s) assert_equal(random.choice(6, s, replace=False, p=p).shape, s) assert_equal(random.choice(np.arange(6), s, replace=True).shape, s) # Check zero-size assert_equal(random.randint(0, 0, size=(3, 0, 4)).shape, (3, 0, 4)) assert_equal(random.randint(0, -10, size=0).shape, (0,)) assert_equal(random.randint(10, 10, size=0).shape, (0,)) assert_equal(random.choice(0, size=0).shape, (0,)) assert_equal(random.choice([], size=(0,)).shape, (0,)) assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape, (3, 0, 4)) assert_raises(ValueError, random.choice, [], 10) def test_choice_nan_probabilities(self): a = np.array([42, 1, 2]) p = [None, None, None] assert_raises(ValueError, random.choice, a, p=p) def test_choice_p_non_contiguous(self): p = np.ones(10) / 5 p[1::2] = 3.0 random.seed(self.seed) non_contig = random.choice(5, 3, p=p[::2]) random.seed(self.seed) contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2])) assert_array_equal(non_contig, contig) def test_bytes(self): random.seed(self.seed) actual = random.bytes(10) desired = b'\x82Ui\x9e\xff\x97+Wf\xa5' assert_equal(actual, desired) def test_shuffle(self): # Test lists, arrays (of various dtypes), and multidimensional versions # of both, c-contiguous or not: for conv in [lambda x: np.array([]), lambda x: x, lambda x: np.asarray(x).astype(np.int8), lambda x: np.asarray(x).astype(np.float32), lambda x: np.asarray(x).astype(np.complex64), lambda x: np.asarray(x).astype(object), lambda x: [(i, i) for i in x], lambda x: np.asarray([[i, i] for i in x]), lambda x: np.vstack([x, x]).T, # gh-11442 lambda x: (np.asarray([(i, i) for i in x], [("a", int), ("b", int)]) .view(np.recarray)), # gh-4270 lambda x: np.asarray([(i, i) for i in x], [("a", object, (1,)), ("b", np.int32, (1,))])]: random.seed(self.seed) alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) random.shuffle(alist) actual = alist desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3]) assert_array_equal(actual, desired) def test_shuffle_masked(self): # gh-3263 a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1) b = np.ma.masked_values(np.arange(20) % 3 - 1, -1) a_orig = a.copy() b_orig = b.copy() for i in range(50): random.shuffle(a) assert_equal( sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask])) random.shuffle(b) assert_equal( sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask])) def test_shuffle_invalid_objects(self): x = np.array(3) assert_raises(TypeError, random.shuffle, x) def test_permutation(self): random.seed(self.seed) alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0] actual = random.permutation(alist) desired = [0, 1, 9, 6, 2, 4, 5, 8, 7, 3] assert_array_equal(actual, desired) random.seed(self.seed) arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T actual = random.permutation(arr_2d) assert_array_equal(actual, np.atleast_2d(desired).T) random.seed(self.seed) bad_x_str = "abcd" assert_raises(IndexError, random.permutation, bad_x_str) random.seed(self.seed) bad_x_float = 1.2 assert_raises(IndexError, random.permutation, bad_x_float) integer_val = 10 desired = [9, 0, 8, 5, 1, 3, 4, 7, 6, 2] random.seed(self.seed) actual = random.permutation(integer_val) assert_array_equal(actual, desired) def test_beta(self): random.seed(self.seed) actual = random.beta(.1, .9, size=(3, 2)) desired = np.array( [[1.45341850513746058e-02, 5.31297615662868145e-04], [1.85366619058432324e-06, 4.19214516800110563e-03], [1.58405155108498093e-04, 1.26252891949397652e-04]]) assert_array_almost_equal(actual, desired, decimal=15) def test_binomial(self): random.seed(self.seed) actual = random.binomial(100.123, .456, size=(3, 2)) desired = np.array([[37, 43], [42, 48], [46, 45]]) assert_array_equal(actual, desired) random.seed(self.seed) actual = random.binomial(100.123, .456) desired = 37 assert_array_equal(actual, desired) def test_chisquare(self): random.seed(self.seed) actual = random.chisquare(50, size=(3, 2)) desired = np.array([[63.87858175501090585, 68.68407748911370447], [65.77116116901505904, 47.09686762438974483], [72.3828403199695174, 74.18408615260374006]]) assert_array_almost_equal(actual, desired, decimal=13) def test_dirichlet(self): random.seed(self.seed) alpha = np.array([51.72840233779265162, 39.74494232180943953]) actual = random.dirichlet(alpha, size=(3, 2)) desired = np.array([[[0.54539444573611562, 0.45460555426388438], [0.62345816822039413, 0.37654183177960598]], [[0.55206000085785778, 0.44793999914214233], [0.58964023305154301, 0.41035976694845688]], [[0.59266909280647828, 0.40733090719352177], [0.56974431743975207, 0.43025568256024799]]]) assert_array_almost_equal(actual, desired, decimal=15) bad_alpha = np.array([5.4e-01, -1.0e-16]) assert_raises(ValueError, random.dirichlet, bad_alpha) random.seed(self.seed) alpha = np.array([51.72840233779265162, 39.74494232180943953]) actual = random.dirichlet(alpha) assert_array_almost_equal(actual, desired[0, 0], decimal=15) def test_dirichlet_size(self): # gh-3173 p = np.array([51.72840233779265162, 39.74494232180943953]) assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2)) assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2)) assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2)) assert_raises(TypeError, random.dirichlet, p, float(1)) def test_dirichlet_bad_alpha(self): # gh-2089 alpha = np.array([5.4e-01, -1.0e-16]) assert_raises(ValueError, random.dirichlet, alpha) def test_dirichlet_zero_alpha(self): y = random.default_rng().dirichlet([5, 9, 0, 8]) assert_equal(y[2], 0) def test_dirichlet_alpha_non_contiguous(self): a = np.array([51.72840233779265162, -1.0, 39.74494232180943953]) alpha = a[::2] random.seed(self.seed) non_contig = random.dirichlet(alpha, size=(3, 2)) random.seed(self.seed) contig = random.dirichlet(np.ascontiguousarray(alpha), size=(3, 2)) assert_array_almost_equal(non_contig, contig) def test_exponential(self): random.seed(self.seed) actual = random.exponential(1.1234, size=(3, 2)) desired = np.array([[1.08342649775011624, 1.00607889924557314], [2.46628830085216721, 2.49668106809923884], [0.68717433461363442, 1.69175666993575979]]) assert_array_almost_equal(actual, desired, decimal=15) def test_exponential_0(self): assert_equal(random.exponential(scale=0), 0) assert_raises(ValueError, random.exponential, scale=-0.) def test_f(self): random.seed(self.seed) actual = random.f(12, 77, size=(3, 2)) desired = np.array([[1.21975394418575878, 1.75135759791559775], [1.44803115017146489, 1.22108959480396262], [1.02176975757740629, 1.34431827623300415]]) assert_array_almost_equal(actual, desired, decimal=15) def test_gamma(self): random.seed(self.seed) actual = random.gamma(5, 3, size=(3, 2)) desired = np.array([[24.60509188649287182, 28.54993563207210627], [26.13476110204064184, 12.56988482927716078], [31.71863275789960568, 33.30143302795922011]]) assert_array_almost_equal(actual, desired, decimal=14) def test_gamma_0(self): assert_equal(random.gamma(shape=0, scale=0), 0) assert_raises(ValueError, random.gamma, shape=-0., scale=-0.) def test_geometric(self): random.seed(self.seed) actual = random.geometric(.123456789, size=(3, 2)) desired = np.array([[8, 7], [17, 17], [5, 12]]) assert_array_equal(actual, desired) def test_geometric_exceptions(self): assert_raises(ValueError, random.geometric, 1.1) assert_raises(ValueError, random.geometric, [1.1] * 10) assert_raises(ValueError, random.geometric, -0.1) assert_raises(ValueError, random.geometric, [-0.1] * 10) with suppress_warnings() as sup: sup.record(RuntimeWarning) assert_raises(ValueError, random.geometric, np.nan) assert_raises(ValueError, random.geometric, [np.nan] * 10) def test_gumbel(self): random.seed(self.seed) actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2)) desired = np.array([[0.19591898743416816, 0.34405539668096674], [-1.4492522252274278, -1.47374816298446865], [1.10651090478803416, -0.69535848626236174]]) assert_array_almost_equal(actual, desired, decimal=15) def test_gumbel_0(self): assert_equal(random.gumbel(scale=0), 0) assert_raises(ValueError, random.gumbel, scale=-0.) def test_hypergeometric(self): random.seed(self.seed) actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2)) desired = np.array([[10, 10], [10, 10], [9, 9]]) assert_array_equal(actual, desired) # Test nbad = 0 actual = random.hypergeometric(5, 0, 3, size=4) desired = np.array([3, 3, 3, 3]) assert_array_equal(actual, desired) actual = random.hypergeometric(15, 0, 12, size=4) desired = np.array([12, 12, 12, 12]) assert_array_equal(actual, desired) # Test ngood = 0 actual = random.hypergeometric(0, 5, 3, size=4) desired = np.array([0, 0, 0, 0]) assert_array_equal(actual, desired) actual = random.hypergeometric(0, 15, 12, size=4) desired = np.array([0, 0, 0, 0]) assert_array_equal(actual, desired) def test_laplace(self): random.seed(self.seed) actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2)) desired = np.array([[0.66599721112760157, 0.52829452552221945], [3.12791959514407125, 3.18202813572992005], [-0.05391065675859356, 1.74901336242837324]]) assert_array_almost_equal(actual, desired, decimal=15) def test_laplace_0(self): assert_equal(random.laplace(scale=0), 0) assert_raises(ValueError, random.laplace, scale=-0.) def test_logistic(self): random.seed(self.seed) actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2)) desired = np.array([[1.09232835305011444, 0.8648196662399954], [4.27818590694950185, 4.33897006346929714], [-0.21682183359214885, 2.63373365386060332]]) assert_array_almost_equal(actual, desired, decimal=15) def test_lognormal(self): random.seed(self.seed) actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2)) desired = np.array([[16.50698631688883822, 36.54846706092654784], [22.67886599981281748, 0.71617561058995771], [65.72798501792723869, 86.84341601437161273]]) assert_array_almost_equal(actual, desired, decimal=13) def test_lognormal_0(self): assert_equal(random.lognormal(sigma=0), 1) assert_raises(ValueError, random.lognormal, sigma=-0.) def test_logseries(self): random.seed(self.seed) actual = random.logseries(p=.923456789, size=(3, 2)) desired = np.array([[2, 2], [6, 17], [3, 6]]) assert_array_equal(actual, desired) def test_logseries_zero(self): assert random.logseries(0) == 1 @pytest.mark.parametrize("value", [np.nextafter(0., -1), 1., np.nan, 5.]) def test_logseries_exceptions(self, value): with np.errstate(invalid="ignore"): with pytest.raises(ValueError): random.logseries(value) with pytest.raises(ValueError): # contiguous path: random.logseries(np.array([value] * 10)) with pytest.raises(ValueError): # non-contiguous path: random.logseries(np.array([value] * 10)[::2]) def test_multinomial(self): random.seed(self.seed) actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2)) desired = np.array([[[4, 3, 5, 4, 2, 2], [5, 2, 8, 2, 2, 1]], [[3, 4, 3, 6, 0, 4], [2, 1, 4, 3, 6, 4]], [[4, 4, 2, 5, 2, 3], [4, 3, 4, 2, 3, 4]]]) assert_array_equal(actual, desired) def test_multivariate_normal(self): random.seed(self.seed) mean = (.123456789, 10) cov = [[1, 0], [0, 1]] size = (3, 2) actual = random.multivariate_normal(mean, cov, size) desired = np.array([[[1.463620246718631, 11.73759122771936], [1.622445133300628, 9.771356667546383]], [[2.154490787682787, 12.170324946056553], [1.719909438201865, 9.230548443648306]], [[0.689515026297799, 9.880729819607714], [-0.023054015651998, 9.201096623542879]]]) assert_array_almost_equal(actual, desired, decimal=15) # Check for default size, was raising deprecation warning actual = random.multivariate_normal(mean, cov) desired = np.array([0.895289569463708, 9.17180864067987]) assert_array_almost_equal(actual, desired, decimal=15) # Check that non positive-semidefinite covariance warns with # RuntimeWarning mean = [0, 0] cov = [[1, 2], [2, 1]] assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov) # and that it doesn't warn with RuntimeWarning check_valid='ignore' assert_no_warnings(random.multivariate_normal, mean, cov, check_valid='ignore') # and that it raises with RuntimeWarning check_valid='raises' assert_raises(ValueError, random.multivariate_normal, mean, cov, check_valid='raise') cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32) with suppress_warnings() as sup: random.multivariate_normal(mean, cov) w = sup.record(RuntimeWarning) assert len(w) == 0 mu = np.zeros(2) cov = np.eye(2) assert_raises(ValueError, random.multivariate_normal, mean, cov, check_valid='other') assert_raises(ValueError, random.multivariate_normal, np.zeros((2, 1, 1)), cov) assert_raises(ValueError, random.multivariate_normal, mu, np.empty((3, 2))) assert_raises(ValueError, random.multivariate_normal, mu, np.eye(3)) def test_negative_binomial(self): random.seed(self.seed) actual = random.negative_binomial(n=100, p=.12345, size=(3, 2)) desired = np.array([[848, 841], [892, 611], [779, 647]]) assert_array_equal(actual, desired) def test_negative_binomial_exceptions(self): with suppress_warnings() as sup: sup.record(RuntimeWarning) assert_raises(ValueError, random.negative_binomial, 100, np.nan) assert_raises(ValueError, random.negative_binomial, 100, [np.nan] * 10) def test_noncentral_chisquare(self): random.seed(self.seed) actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2)) desired = np.array([[23.91905354498517511, 13.35324692733826346], [31.22452661329736401, 16.60047399466177254], [5.03461598262724586, 17.94973089023519464]]) assert_array_almost_equal(actual, desired, decimal=14) actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2)) desired = np.array([[1.47145377828516666, 0.15052899268012659], [0.00943803056963588, 1.02647251615666169], [0.332334982684171, 0.15451287602753125]]) assert_array_almost_equal(actual, desired, decimal=14) random.seed(self.seed) actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2)) desired = np.array([[9.597154162763948, 11.725484450296079], [10.413711048138335, 3.694475922923986], [13.484222138963087, 14.377255424602957]]) assert_array_almost_equal(actual, desired, decimal=14) def test_noncentral_f(self): random.seed(self.seed) actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1, size=(3, 2)) desired = np.array([[1.40598099674926669, 0.34207973179285761], [3.57715069265772545, 7.92632662577829805], [0.43741599463544162, 1.1774208752428319]]) assert_array_almost_equal(actual, desired, decimal=14) def test_noncentral_f_nan(self): random.seed(self.seed) actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan) assert np.isnan(actual) def test_normal(self): random.seed(self.seed) actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2)) desired = np.array([[2.80378370443726244, 3.59863924443872163], [3.121433477601256, -0.33382987590723379], [4.18552478636557357, 4.46410668111310471]]) assert_array_almost_equal(actual, desired, decimal=15) def test_normal_0(self): assert_equal(random.normal(scale=0), 0) assert_raises(ValueError, random.normal, scale=-0.) def test_pareto(self): random.seed(self.seed) actual = random.pareto(a=.123456789, size=(3, 2)) desired = np.array( [[2.46852460439034849e+03, 1.41286880810518346e+03], [5.28287797029485181e+07, 6.57720981047328785e+07], [1.40840323350391515e+02, 1.98390255135251704e+05]]) # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this # matrix differs by 24 nulps. Discussion: # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html # Consensus is that this is probably some gcc quirk that affects # rounding but not in any important way, so we just use a looser # tolerance on this test: np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30) def test_poisson(self): random.seed(self.seed) actual = random.poisson(lam=.123456789, size=(3, 2)) desired = np.array([[0, 0], [1, 0], [0, 0]]) assert_array_equal(actual, desired) def test_poisson_exceptions(self): lambig = np.iinfo('l').max lamneg = -1 assert_raises(ValueError, random.poisson, lamneg) assert_raises(ValueError, random.poisson, [lamneg] * 10) assert_raises(ValueError, random.poisson, lambig) assert_raises(ValueError, random.poisson, [lambig] * 10) with suppress_warnings() as sup: sup.record(RuntimeWarning) assert_raises(ValueError, random.poisson, np.nan) assert_raises(ValueError, random.poisson, [np.nan] * 10) def test_power(self): random.seed(self.seed) actual = random.power(a=.123456789, size=(3, 2)) desired = np.array([[0.02048932883240791, 0.01424192241128213], [0.38446073748535298, 0.39499689943484395], [0.00177699707563439, 0.13115505880863756]]) assert_array_almost_equal(actual, desired, decimal=15) def test_rayleigh(self): random.seed(self.seed) actual = random.rayleigh(scale=10, size=(3, 2)) desired = np.array([[13.8882496494248393, 13.383318339044731], [20.95413364294492098, 21.08285015800712614], [11.06066537006854311, 17.35468505778271009]]) assert_array_almost_equal(actual, desired, decimal=14) def test_rayleigh_0(self): assert_equal(random.rayleigh(scale=0), 0) assert_raises(ValueError, random.rayleigh, scale=-0.) def test_standard_cauchy(self): random.seed(self.seed) actual = random.standard_cauchy(size=(3, 2)) desired = np.array([[0.77127660196445336, -6.55601161955910605], [0.93582023391158309, -2.07479293013759447], [-4.74601644297011926, 0.18338989290760804]]) assert_array_almost_equal(actual, desired, decimal=15) def test_standard_exponential(self): random.seed(self.seed) actual = random.standard_exponential(size=(3, 2)) desired = np.array([[0.96441739162374596, 0.89556604882105506], [2.1953785836319808, 2.22243285392490542], [0.6116915921431676, 1.50592546727413201]]) assert_array_almost_equal(actual, desired, decimal=15) def test_standard_gamma(self): random.seed(self.seed) actual = random.standard_gamma(shape=3, size=(3, 2)) desired = np.array([[5.50841531318455058, 6.62953470301903103], [5.93988484943779227, 2.31044849402133989], [7.54838614231317084, 8.012756093271868]]) assert_array_almost_equal(actual, desired, decimal=14) def test_standard_gamma_0(self): assert_equal(random.standard_gamma(shape=0), 0) assert_raises(ValueError, random.standard_gamma, shape=-0.) def test_standard_normal(self): random.seed(self.seed) actual = random.standard_normal(size=(3, 2)) desired = np.array([[1.34016345771863121, 1.73759122771936081], [1.498988344300628, -0.2286433324536169], [2.031033998682787, 2.17032494605655257]]) assert_array_almost_equal(actual, desired, decimal=15) def test_randn_singleton(self): random.seed(self.seed) actual = random.randn() desired = np.array(1.34016345771863121) assert_array_almost_equal(actual, desired, decimal=15) def test_standard_t(self): random.seed(self.seed) actual = random.standard_t(df=10, size=(3, 2)) desired = np.array([[0.97140611862659965, -0.08830486548450577], [1.36311143689505321, -0.55317463909867071], [-0.18473749069684214, 0.61181537341755321]]) assert_array_almost_equal(actual, desired, decimal=15) def test_triangular(self): random.seed(self.seed) actual = random.triangular(left=5.12, mode=10.23, right=20.34, size=(3, 2)) desired = np.array([[12.68117178949215784, 12.4129206149193152], [16.20131377335158263, 16.25692138747600524], [11.20400690911820263, 14.4978144835829923]]) assert_array_almost_equal(actual, desired, decimal=14) def test_uniform(self): random.seed(self.seed) actual = random.uniform(low=1.23, high=10.54, size=(3, 2)) desired = np.array([[6.99097932346268003, 6.73801597444323974], [9.50364421400426274, 9.53130618907631089], [5.48995325769805476, 8.47493103280052118]]) assert_array_almost_equal(actual, desired, decimal=15) def test_uniform_range_bounds(self): fmin = np.finfo('float').min fmax = np.finfo('float').max func = random.uniform assert_raises(OverflowError, func, -np.inf, 0) assert_raises(OverflowError, func, 0, np.inf) assert_raises(OverflowError, func, fmin, fmax) assert_raises(OverflowError, func, [-np.inf], [0]) assert_raises(OverflowError, func, [0], [np.inf]) # (fmax / 1e17) - fmin is within range, so this should not throw # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX > # DBL_MAX by increasing fmin a bit random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17) def test_scalar_exception_propagation(self): # Tests that exceptions are correctly propagated in distributions # when called with objects that throw exceptions when converted to # scalars. # # Regression test for gh: 8865 class ThrowingFloat(np.ndarray): def __float__(self): raise TypeError throwing_float = np.array(1.0).view(ThrowingFloat) assert_raises(TypeError, random.uniform, throwing_float, throwing_float) class ThrowingInteger(np.ndarray): def __int__(self): raise TypeError throwing_int = np.array(1).view(ThrowingInteger) assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1) def test_vonmises(self): random.seed(self.seed) actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2)) desired = np.array([[2.28567572673902042, 2.89163838442285037], [0.38198375564286025, 2.57638023113890746], [1.19153771588353052, 1.83509849681825354]]) assert_array_almost_equal(actual, desired, decimal=15) def test_vonmises_small(self): # check infinite loop, gh-4720 random.seed(self.seed) r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6) assert_(np.isfinite(r).all()) def test_vonmises_large(self): # guard against changes in RandomState when Generator is fixed random.seed(self.seed) actual = random.vonmises(mu=0., kappa=1e7, size=3) desired = np.array([4.634253748521111e-04, 3.558873596114509e-04, -2.337119622577433e-04]) assert_array_almost_equal(actual, desired, decimal=8) def test_vonmises_nan(self): random.seed(self.seed) r = random.vonmises(mu=0., kappa=np.nan) assert_(np.isnan(r)) def test_wald(self): random.seed(self.seed) actual = random.wald(mean=1.23, scale=1.54, size=(3, 2)) desired = np.array([[3.82935265715889983, 5.13125249184285526], [0.35045403618358717, 1.50832396872003538], [0.24124319895843183, 0.22031101461955038]]) assert_array_almost_equal(actual, desired, decimal=14) def test_weibull(self): random.seed(self.seed) actual = random.weibull(a=1.23, size=(3, 2)) desired = np.array([[0.97097342648766727, 0.91422896443565516], [1.89517770034962929, 1.91414357960479564], [0.67057783752390987, 1.39494046635066793]]) assert_array_almost_equal(actual, desired, decimal=15) def test_weibull_0(self): random.seed(self.seed) assert_equal(random.weibull(a=0, size=12), np.zeros(12)) assert_raises(ValueError, random.weibull, a=-0.) def test_zipf(self): random.seed(self.seed) actual = random.zipf(a=1.23, size=(3, 2)) desired = np.array([[66, 29], [1, 1], [3, 13]]) assert_array_equal(actual, desired) class TestBroadcast: # tests that functions that broadcast behave # correctly when presented with non-scalar arguments def setup_method(self): self.seed = 123456789 def set_seed(self): random.seed(self.seed) def test_uniform(self): low = [0] high = [1] uniform = random.uniform desired = np.array([0.53283302478975902, 0.53413660089041659, 0.50955303552646702]) self.set_seed() actual = uniform(low * 3, high) assert_array_almost_equal(actual, desired, decimal=14) self.set_seed() actual = uniform(low, high * 3) assert_array_almost_equal(actual, desired, decimal=14) def test_normal(self): loc = [0] scale = [1] bad_scale = [-1] normal = random.normal desired = np.array([2.2129019979039612, 2.1283977976520019, 1.8417114045748335]) self.set_seed() actual = normal(loc * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, normal, loc * 3, bad_scale) self.set_seed() actual = normal(loc, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, normal, loc, bad_scale * 3) def test_beta(self): a = [1] b = [2] bad_a = [-1] bad_b = [-2] beta = random.beta desired = np.array([0.19843558305989056, 0.075230336409423643, 0.24976865978980844]) self.set_seed() actual = beta(a * 3, b) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, beta, bad_a * 3, b) assert_raises(ValueError, beta, a * 3, bad_b) self.set_seed() actual = beta(a, b * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, beta, bad_a, b * 3) assert_raises(ValueError, beta, a, bad_b * 3) def test_exponential(self): scale = [1] bad_scale = [-1] exponential = random.exponential desired = np.array([0.76106853658845242, 0.76386282278691653, 0.71243813125891797]) self.set_seed() actual = exponential(scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, exponential, bad_scale * 3) def test_standard_gamma(self): shape = [1] bad_shape = [-1] std_gamma = random.standard_gamma desired = np.array([0.76106853658845242, 0.76386282278691653, 0.71243813125891797]) self.set_seed() actual = std_gamma(shape * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, std_gamma, bad_shape * 3) def test_gamma(self): shape = [1] scale = [2] bad_shape = [-1] bad_scale = [-2] gamma = random.gamma desired = np.array([1.5221370731769048, 1.5277256455738331, 1.4248762625178359]) self.set_seed() actual = gamma(shape * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, gamma, bad_shape * 3, scale) assert_raises(ValueError, gamma, shape * 3, bad_scale) self.set_seed() actual = gamma(shape, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, gamma, bad_shape, scale * 3) assert_raises(ValueError, gamma, shape, bad_scale * 3) def test_f(self): dfnum = [1] dfden = [2] bad_dfnum = [-1] bad_dfden = [-2] f = random.f desired = np.array([0.80038951638264799, 0.86768719635363512, 2.7251095168386801]) self.set_seed() actual = f(dfnum * 3, dfden) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, f, bad_dfnum * 3, dfden) assert_raises(ValueError, f, dfnum * 3, bad_dfden) self.set_seed() actual = f(dfnum, dfden * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, f, bad_dfnum, dfden * 3) assert_raises(ValueError, f, dfnum, bad_dfden * 3) def test_noncentral_f(self): dfnum = [2] dfden = [3] nonc = [4] bad_dfnum = [0] bad_dfden = [-1] bad_nonc = [-2] nonc_f = random.noncentral_f desired = np.array([9.1393943263705211, 13.025456344595602, 8.8018098359100545]) self.set_seed() actual = nonc_f(dfnum * 3, dfden, nonc) assert_array_almost_equal(actual, desired, decimal=14) assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3))) assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc) assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc) assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc) self.set_seed() actual = nonc_f(dfnum, dfden * 3, nonc) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc) assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc) assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc) self.set_seed() actual = nonc_f(dfnum, dfden, nonc * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3) assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3) assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3) def test_noncentral_f_small_df(self): self.set_seed() desired = np.array([6.869638627492048, 0.785880199263955]) actual = random.noncentral_f(0.9, 0.9, 2, size=2) assert_array_almost_equal(actual, desired, decimal=14) def test_chisquare(self): df = [1] bad_df = [-1] chisquare = random.chisquare desired = np.array([0.57022801133088286, 0.51947702108840776, 0.1320969254923558]) self.set_seed() actual = chisquare(df * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, chisquare, bad_df * 3) def test_noncentral_chisquare(self): df = [1] nonc = [2] bad_df = [-1] bad_nonc = [-2] nonc_chi = random.noncentral_chisquare desired = np.array([9.0015599467913763, 4.5804135049718742, 6.0872302432834564]) self.set_seed() actual = nonc_chi(df * 3, nonc) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, nonc_chi, bad_df * 3, nonc) assert_raises(ValueError, nonc_chi, df * 3, bad_nonc) self.set_seed() actual = nonc_chi(df, nonc * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, nonc_chi, bad_df, nonc * 3) assert_raises(ValueError, nonc_chi, df, bad_nonc * 3) def test_standard_t(self): df = [1] bad_df = [-1] t = random.standard_t desired = np.array([3.0702872575217643, 5.8560725167361607, 1.0274791436474273]) self.set_seed() actual = t(df * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, t, bad_df * 3) assert_raises(ValueError, random.standard_t, bad_df * 3) def test_vonmises(self): mu = [2] kappa = [1] bad_kappa = [-1] vonmises = random.vonmises desired = np.array([2.9883443664201312, -2.7064099483995943, -1.8672476700665914]) self.set_seed() actual = vonmises(mu * 3, kappa) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, vonmises, mu * 3, bad_kappa) self.set_seed() actual = vonmises(mu, kappa * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, vonmises, mu, bad_kappa * 3) def test_pareto(self): a = [1] bad_a = [-1] pareto = random.pareto desired = np.array([1.1405622680198362, 1.1465519762044529, 1.0389564467453547]) self.set_seed() actual = pareto(a * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, pareto, bad_a * 3) assert_raises(ValueError, random.pareto, bad_a * 3) def test_weibull(self): a = [1] bad_a = [-1] weibull = random.weibull desired = np.array([0.76106853658845242, 0.76386282278691653, 0.71243813125891797]) self.set_seed() actual = weibull(a * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, weibull, bad_a * 3) assert_raises(ValueError, random.weibull, bad_a * 3) def test_power(self): a = [1] bad_a = [-1] power = random.power desired = np.array([0.53283302478975902, 0.53413660089041659, 0.50955303552646702]) self.set_seed() actual = power(a * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, power, bad_a * 3) assert_raises(ValueError, random.power, bad_a * 3) def test_laplace(self): loc = [0] scale = [1] bad_scale = [-1] laplace = random.laplace desired = np.array([0.067921356028507157, 0.070715642226971326, 0.019290950698972624]) self.set_seed() actual = laplace(loc * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, laplace, loc * 3, bad_scale) self.set_seed() actual = laplace(loc, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, laplace, loc, bad_scale * 3) def test_gumbel(self): loc = [0] scale = [1] bad_scale = [-1] gumbel = random.gumbel desired = np.array([0.2730318639556768, 0.26936705726291116, 0.33906220393037939]) self.set_seed() actual = gumbel(loc * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, gumbel, loc * 3, bad_scale) self.set_seed() actual = gumbel(loc, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, gumbel, loc, bad_scale * 3) def test_logistic(self): loc = [0] scale = [1] bad_scale = [-1] logistic = random.logistic desired = np.array([0.13152135837586171, 0.13675915696285773, 0.038216792802833396]) self.set_seed() actual = logistic(loc * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, logistic, loc * 3, bad_scale) self.set_seed() actual = logistic(loc, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, logistic, loc, bad_scale * 3) assert_equal(random.logistic(1.0, 0.0), 1.0) def test_lognormal(self): mean = [0] sigma = [1] bad_sigma = [-1] lognormal = random.lognormal desired = np.array([9.1422086044848427, 8.4013952870126261, 6.3073234116578671]) self.set_seed() actual = lognormal(mean * 3, sigma) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, lognormal, mean * 3, bad_sigma) assert_raises(ValueError, random.lognormal, mean * 3, bad_sigma) self.set_seed() actual = lognormal(mean, sigma * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, lognormal, mean, bad_sigma * 3) assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3) def test_rayleigh(self): scale = [1] bad_scale = [-1] rayleigh = random.rayleigh desired = np.array([1.2337491937897689, 1.2360119924878694, 1.1936818095781789]) self.set_seed() actual = rayleigh(scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, rayleigh, bad_scale * 3) def test_wald(self): mean = [0.5] scale = [1] bad_mean = [0] bad_scale = [-2] wald = random.wald desired = np.array([0.11873681120271318, 0.12450084820795027, 0.9096122728408238]) self.set_seed() actual = wald(mean * 3, scale) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, wald, bad_mean * 3, scale) assert_raises(ValueError, wald, mean * 3, bad_scale) assert_raises(ValueError, random.wald, bad_mean * 3, scale) assert_raises(ValueError, random.wald, mean * 3, bad_scale) self.set_seed() actual = wald(mean, scale * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, wald, bad_mean, scale * 3) assert_raises(ValueError, wald, mean, bad_scale * 3) assert_raises(ValueError, wald, 0.0, 1) assert_raises(ValueError, wald, 0.5, 0.0) def test_triangular(self): left = [1] right = [3] mode = [2] bad_left_one = [3] bad_mode_one = [4] bad_left_two, bad_mode_two = right * 2 triangular = random.triangular desired = np.array([2.03339048710429, 2.0347400359389356, 2.0095991069536208]) self.set_seed() actual = triangular(left * 3, mode, right) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, triangular, bad_left_one * 3, mode, right) assert_raises(ValueError, triangular, left * 3, bad_mode_one, right) assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two, right) self.set_seed() actual = triangular(left, mode * 3, right) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, triangular, bad_left_one, mode * 3, right) assert_raises(ValueError, triangular, left, bad_mode_one * 3, right) assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3, right) self.set_seed() actual = triangular(left, mode, right * 3) assert_array_almost_equal(actual, desired, decimal=14) assert_raises(ValueError, triangular, bad_left_one, mode, right * 3) assert_raises(ValueError, triangular, left, bad_mode_one, right * 3) assert_raises(ValueError, triangular, bad_left_two, bad_mode_two, right * 3) assert_raises(ValueError, triangular, 10., 0., 20.) assert_raises(ValueError, triangular, 10., 25., 20.) assert_raises(ValueError, triangular, 10., 10., 10.) def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] binom = random.binomial desired = np.array([1, 1, 1]) self.set_seed() actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) self.set_seed() actual = binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3) def test_negative_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] neg_binom = random.negative_binomial desired = np.array([1, 0, 1]) self.set_seed() actual = neg_binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, neg_binom, bad_n * 3, p) assert_raises(ValueError, neg_binom, n * 3, bad_p_one) assert_raises(ValueError, neg_binom, n * 3, bad_p_two) self.set_seed() actual = neg_binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, neg_binom, bad_n, p * 3) assert_raises(ValueError, neg_binom, n, bad_p_one * 3) assert_raises(ValueError, neg_binom, n, bad_p_two * 3) def test_poisson(self): max_lam = random.RandomState()._poisson_lam_max lam = [1] bad_lam_one = [-1] bad_lam_two = [max_lam * 2] poisson = random.poisson desired = np.array([1, 1, 0]) self.set_seed() actual = poisson(lam * 3) assert_array_equal(actual, desired) assert_raises(ValueError, poisson, bad_lam_one * 3) assert_raises(ValueError, poisson, bad_lam_two * 3) def test_zipf(self): a = [2] bad_a = [0] zipf = random.zipf desired = np.array([2, 2, 1]) self.set_seed() actual = zipf(a * 3) assert_array_equal(actual, desired) assert_raises(ValueError, zipf, bad_a * 3) with np.errstate(invalid='ignore'): assert_raises(ValueError, zipf, np.nan) assert_raises(ValueError, zipf, [0, 0, np.nan]) def test_geometric(self): p = [0.5] bad_p_one = [-1] bad_p_two = [1.5] geom = random.geometric desired = np.array([2, 2, 2]) self.set_seed() actual = geom(p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, geom, bad_p_one * 3) assert_raises(ValueError, geom, bad_p_two * 3) def test_hypergeometric(self): ngood = [1] nbad = [2] nsample = [2] bad_ngood = [-1] bad_nbad = [-2] bad_nsample_one = [0] bad_nsample_two = [4] hypergeom = random.hypergeometric desired = np.array([1, 1, 1]) self.set_seed() actual = hypergeom(ngood * 3, nbad, nsample) assert_array_equal(actual, desired) assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample) assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample) assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one) assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two) self.set_seed() actual = hypergeom(ngood, nbad * 3, nsample) assert_array_equal(actual, desired) assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample) assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample) assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one) assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two) self.set_seed() actual = hypergeom(ngood, nbad, nsample * 3) assert_array_equal(actual, desired) assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3) assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3) assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3) assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3) assert_raises(ValueError, hypergeom, -1, 10, 20) assert_raises(ValueError, hypergeom, 10, -1, 20) assert_raises(ValueError, hypergeom, 10, 10, 0) assert_raises(ValueError, hypergeom, 10, 10, 25) def test_logseries(self): p = [0.5] bad_p_one = [2] bad_p_two = [-1] logseries = random.logseries desired = np.array([1, 1, 1]) self.set_seed() actual = logseries(p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, logseries, bad_p_one * 3) assert_raises(ValueError, logseries, bad_p_two * 3) @pytest.mark.skipif(IS_WASM, reason="can't start thread") class TestThread: # make sure each state produces the same sequence even in threads def setup_method(self): self.seeds = range(4) def check_function(self, function, sz): from threading import Thread out1 = np.empty((len(self.seeds),) + sz) out2 = np.empty((len(self.seeds),) + sz) # threaded generation t = [Thread(target=function, args=(random.RandomState(s), o)) for s, o in zip(self.seeds, out1)] [x.start() for x in t] [x.join() for x in t] # the same serial for s, o in zip(self.seeds, out2): function(random.RandomState(s), o) # these platforms change x87 fpu precision mode in threads if np.intp().dtype.itemsize == 4 and sys.platform == "win32": assert_array_almost_equal(out1, out2) else: assert_array_equal(out1, out2) def test_normal(self): def gen_random(state, out): out[...] = state.normal(size=10000) self.check_function(gen_random, sz=(10000,)) def test_exp(self): def gen_random(state, out): out[...] = state.exponential(scale=np.ones((100, 1000))) self.check_function(gen_random, sz=(100, 1000)) def test_multinomial(self): def gen_random(state, out): out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000) self.check_function(gen_random, sz=(10000, 6)) # See Issue #4263 class TestSingleEltArrayInput: def setup_method(self): self.argOne = np.array([2]) self.argTwo = np.array([3]) self.argThree = np.array([4]) self.tgtShape = (1,) def test_one_arg_funcs(self): funcs = (random.exponential, random.standard_gamma, random.chisquare, random.standard_t, random.pareto, random.weibull, random.power, random.rayleigh, random.poisson, random.zipf, random.geometric, random.logseries) probfuncs = (random.geometric, random.logseries) for func in funcs: if func in probfuncs: # p < 1.0 out = func(np.array([0.5])) else: out = func(self.argOne) assert_equal(out.shape, self.tgtShape) def test_two_arg_funcs(self): funcs = (random.uniform, random.normal, random.beta, random.gamma, random.f, random.noncentral_chisquare, random.vonmises, random.laplace, random.gumbel, random.logistic, random.lognormal, random.wald, random.binomial, random.negative_binomial) probfuncs = (random.binomial, random.negative_binomial) for func in funcs: if func in probfuncs: # p <= 1 argTwo = np.array([0.5]) else: argTwo = self.argTwo out = func(self.argOne, argTwo) assert_equal(out.shape, self.tgtShape) out = func(self.argOne[0], argTwo) assert_equal(out.shape, self.tgtShape) out = func(self.argOne, argTwo[0]) assert_equal(out.shape, self.tgtShape) def test_three_arg_funcs(self): funcs = [random.noncentral_f, random.triangular, random.hypergeometric] for func in funcs: out = func(self.argOne, self.argTwo, self.argThree) assert_equal(out.shape, self.tgtShape) out = func(self.argOne[0], self.argTwo, self.argThree) assert_equal(out.shape, self.tgtShape) out = func(self.argOne, self.argTwo[0], self.argThree) assert_equal(out.shape, self.tgtShape) # Ensure returned array dtype is correct for platform def test_integer_dtype(int_func): random.seed(123456789) fname, args, sha256 = int_func f = getattr(random, fname) actual = f(*args, size=2) assert_(actual.dtype == np.dtype('l')) def test_integer_repeat(int_func): random.seed(123456789) fname, args, sha256 = int_func f = getattr(random, fname) val = f(*args, size=1000000) if sys.byteorder != 'little': val = val.byteswap() res = hashlib.sha256(val.view(np.int8)).hexdigest() assert_(res == sha256) def test_broadcast_size_error(): # GH-16833 with pytest.raises(ValueError): random.binomial(1, [0.3, 0.7], size=(2, 1)) with pytest.raises(ValueError): random.binomial([1, 2], 0.3, size=(2, 1)) with pytest.raises(ValueError): random.binomial([1, 2], [0.3, 0.7], size=(2, 1)) def test_randomstate_ctor_old_style_pickle(): rs = np.random.RandomState(MT19937(0)) rs.standard_normal(1) # Directly call reduce which is used in pickling ctor, args, state_a = rs.__reduce__() # Simulate unpickling an old pickle that only has the name assert args[:1] == ("MT19937",) b = ctor(*args[:1]) b.set_state(state_a) state_b = b.get_state(legacy=False) assert_equal(state_a['bit_generator'], state_b['bit_generator']) assert_array_equal(state_a['state']['key'], state_b['state']['key']) assert_array_equal(state_a['state']['pos'], state_b['state']['pos']) assert_equal(state_a['has_gauss'], state_b['has_gauss']) assert_equal(state_a['gauss'], state_b['gauss']) def test_hot_swap(restore_singleton_bitgen): # GH 21808 def_bg = np.random.default_rng(0) bg = def_bg.bit_generator np.random.set_bit_generator(bg) assert isinstance(np.random.mtrand._rand._bit_generator, type(bg)) second_bg = np.random.get_bit_generator() assert bg is second_bg def test_seed_alt_bit_gen(restore_singleton_bitgen): # GH 21808 bg = PCG64(0) np.random.set_bit_generator(bg) state = np.random.get_state(legacy=False) np.random.seed(1) new_state = np.random.get_state(legacy=False) print(state) print(new_state) assert state["bit_generator"] == "PCG64" assert state["state"]["state"] != new_state["state"]["state"] assert state["state"]["inc"] != new_state["state"]["inc"] def test_state_error_alt_bit_gen(restore_singleton_bitgen): # GH 21808 state = np.random.get_state() bg = PCG64(0) np.random.set_bit_generator(bg) with pytest.raises(ValueError, match="state must be for a PCG64"): np.random.set_state(state) def test_swap_worked(restore_singleton_bitgen): # GH 21808 np.random.seed(98765) vals = np.random.randint(0, 2 ** 30, 10) bg = PCG64(0) state = bg.state np.random.set_bit_generator(bg) state_direct = np.random.get_state(legacy=False) for field in state: assert state[field] == state_direct[field] np.random.seed(98765) pcg_vals = np.random.randint(0, 2 ** 30, 10) assert not np.all(vals == pcg_vals) new_state = bg.state assert new_state["state"]["state"] != state["state"]["state"] assert new_state["state"]["inc"] == new_state["state"]["inc"] def test_swapped_singleton_against_direct(restore_singleton_bitgen): np.random.set_bit_generator(PCG64(98765)) singleton_vals = np.random.randint(0, 2 ** 30, 10) rg = np.random.RandomState(PCG64(98765)) non_singleton_vals = rg.randint(0, 2 ** 30, 10) assert_equal(non_singleton_vals, singleton_vals)