Server IP : 66.29.132.122 / Your IP : 3.144.237.60 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/proc/self/root/proc/thread-self/root/proc/self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/ |
Upload File : |
from collections.abc import Sequence from typing import ( Any, TypeVar, Generic, overload, Literal, SupportsIndex, ) from numpy import ( # Circumvent a naming conflict with `AxisConcatenator.matrix` matrix as _Matrix, ndenumerate as ndenumerate, ndindex as ndindex, ndarray, dtype, integer, str_, bytes_, bool_, int_, float_, complex_, intp, _OrderCF, _ModeKind, ) from numpy._typing import ( # Arrays ArrayLike, _NestedSequence, _FiniteNestedSequence, NDArray, _ArrayLikeInt, # DTypes DTypeLike, _SupportsDType, # Shapes _ShapeLike, ) from numpy.core.multiarray import ( unravel_index as unravel_index, ravel_multi_index as ravel_multi_index, ) _T = TypeVar("_T") _DType = TypeVar("_DType", bound=dtype[Any]) _BoolType = TypeVar("_BoolType", Literal[True], Literal[False]) _TupType = TypeVar("_TupType", bound=tuple[Any, ...]) _ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any]) __all__: list[str] @overload def ix_(*args: _FiniteNestedSequence[_SupportsDType[_DType]]) -> tuple[ndarray[Any, _DType], ...]: ... @overload def ix_(*args: str | _NestedSequence[str]) -> tuple[NDArray[str_], ...]: ... @overload def ix_(*args: bytes | _NestedSequence[bytes]) -> tuple[NDArray[bytes_], ...]: ... @overload def ix_(*args: bool | _NestedSequence[bool]) -> tuple[NDArray[bool_], ...]: ... @overload def ix_(*args: int | _NestedSequence[int]) -> tuple[NDArray[int_], ...]: ... @overload def ix_(*args: float | _NestedSequence[float]) -> tuple[NDArray[float_], ...]: ... @overload def ix_(*args: complex | _NestedSequence[complex]) -> tuple[NDArray[complex_], ...]: ... class nd_grid(Generic[_BoolType]): sparse: _BoolType def __init__(self, sparse: _BoolType = ...) -> None: ... @overload def __getitem__( self: nd_grid[Literal[False]], key: slice | Sequence[slice], ) -> NDArray[Any]: ... @overload def __getitem__( self: nd_grid[Literal[True]], key: slice | Sequence[slice], ) -> list[NDArray[Any]]: ... class MGridClass(nd_grid[Literal[False]]): def __init__(self) -> None: ... mgrid: MGridClass class OGridClass(nd_grid[Literal[True]]): def __init__(self) -> None: ... ogrid: OGridClass class AxisConcatenator: axis: int matrix: bool ndmin: int trans1d: int def __init__( self, axis: int = ..., matrix: bool = ..., ndmin: int = ..., trans1d: int = ..., ) -> None: ... @staticmethod @overload def concatenate( # type: ignore[misc] *a: ArrayLike, axis: SupportsIndex = ..., out: None = ... ) -> NDArray[Any]: ... @staticmethod @overload def concatenate( *a: ArrayLike, axis: SupportsIndex = ..., out: _ArrayType = ... ) -> _ArrayType: ... @staticmethod def makemat( data: ArrayLike, dtype: DTypeLike = ..., copy: bool = ... ) -> _Matrix[Any, Any]: ... # TODO: Sort out this `__getitem__` method def __getitem__(self, key: Any) -> Any: ... class RClass(AxisConcatenator): axis: Literal[0] matrix: Literal[False] ndmin: Literal[1] trans1d: Literal[-1] def __init__(self) -> None: ... r_: RClass class CClass(AxisConcatenator): axis: Literal[-1] matrix: Literal[False] ndmin: Literal[2] trans1d: Literal[0] def __init__(self) -> None: ... c_: CClass class IndexExpression(Generic[_BoolType]): maketuple: _BoolType def __init__(self, maketuple: _BoolType) -> None: ... @overload def __getitem__(self, item: _TupType) -> _TupType: ... # type: ignore[misc] @overload def __getitem__(self: IndexExpression[Literal[True]], item: _T) -> tuple[_T]: ... @overload def __getitem__(self: IndexExpression[Literal[False]], item: _T) -> _T: ... index_exp: IndexExpression[Literal[True]] s_: IndexExpression[Literal[False]] def fill_diagonal(a: ndarray[Any, Any], val: Any, wrap: bool = ...) -> None: ... def diag_indices(n: int, ndim: int = ...) -> tuple[NDArray[int_], ...]: ... def diag_indices_from(arr: ArrayLike) -> tuple[NDArray[int_], ...]: ... # NOTE: see `numpy/__init__.pyi` for `ndenumerate` and `ndindex`