Server IP : 66.29.132.122 / Your IP : 3.144.114.109 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/proc/self/root/proc/self/root/usr/include/linux/ |
Upload File : |
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * VFIO API definition * * Copyright (C) 2012 Red Hat, Inc. All rights reserved. * Author: Alex Williamson <alex.williamson@redhat.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef VFIO_H #define VFIO_H #include <linux/types.h> #include <linux/ioctl.h> #define VFIO_API_VERSION 0 /* Kernel & User level defines for VFIO IOCTLs. */ /* Extensions */ #define VFIO_TYPE1_IOMMU 1 #define VFIO_SPAPR_TCE_IOMMU 2 #define VFIO_TYPE1v2_IOMMU 3 /* * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This * capability is subject to change as groups are added or removed. */ #define VFIO_DMA_CC_IOMMU 4 /* Check if EEH is supported */ #define VFIO_EEH 5 /* Two-stage IOMMU */ #define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */ #define VFIO_SPAPR_TCE_v2_IOMMU 7 /* * The No-IOMMU IOMMU offers no translation or isolation for devices and * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU * code will taint the host kernel and should be used with extreme caution. */ #define VFIO_NOIOMMU_IOMMU 8 /* * The IOCTL interface is designed for extensibility by embedding the * structure length (argsz) and flags into structures passed between * kernel and userspace. We therefore use the _IO() macro for these * defines to avoid implicitly embedding a size into the ioctl request. * As structure fields are added, argsz will increase to match and flag * bits will be defined to indicate additional fields with valid data. * It's *always* the caller's responsibility to indicate the size of * the structure passed by setting argsz appropriately. */ #define VFIO_TYPE (';') #define VFIO_BASE 100 /* * For extension of INFO ioctls, VFIO makes use of a capability chain * designed after PCI/e capabilities. A flag bit indicates whether * this capability chain is supported and a field defined in the fixed * structure defines the offset of the first capability in the chain. * This field is only valid when the corresponding bit in the flags * bitmap is set. This offset field is relative to the start of the * INFO buffer, as is the next field within each capability header. * The id within the header is a shared address space per INFO ioctl, * while the version field is specific to the capability id. The * contents following the header are specific to the capability id. */ struct vfio_info_cap_header { __u16 id; /* Identifies capability */ __u16 version; /* Version specific to the capability ID */ __u32 next; /* Offset of next capability */ }; /* * Callers of INFO ioctls passing insufficiently sized buffers will see * the capability chain flag bit set, a zero value for the first capability * offset (if available within the provided argsz), and argsz will be * updated to report the necessary buffer size. For compatibility, the * INFO ioctl will not report error in this case, but the capability chain * will not be available. */ /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */ /** * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0) * * Report the version of the VFIO API. This allows us to bump the entire * API version should we later need to add or change features in incompatible * ways. * Return: VFIO_API_VERSION * Availability: Always */ #define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0) /** * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32) * * Check whether an extension is supported. * Return: 0 if not supported, 1 (or some other positive integer) if supported. * Availability: Always */ #define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1) /** * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32) * * Set the iommu to the given type. The type must be supported by an * iommu driver as verified by calling CHECK_EXTENSION using the same * type. A group must be set to this file descriptor before this * ioctl is available. The IOMMU interfaces enabled by this call are * specific to the value set. * Return: 0 on success, -errno on failure * Availability: When VFIO group attached */ #define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2) /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */ /** * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3, * struct vfio_group_status) * * Retrieve information about the group. Fills in provided * struct vfio_group_info. Caller sets argsz. * Return: 0 on succes, -errno on failure. * Availability: Always */ struct vfio_group_status { __u32 argsz; __u32 flags; #define VFIO_GROUP_FLAGS_VIABLE (1 << 0) #define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1) }; #define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3) /** * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32) * * Set the container for the VFIO group to the open VFIO file * descriptor provided. Groups may only belong to a single * container. Containers may, at their discretion, support multiple * groups. Only when a container is set are all of the interfaces * of the VFIO file descriptor and the VFIO group file descriptor * available to the user. * Return: 0 on success, -errno on failure. * Availability: Always */ #define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4) /** * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5) * * Remove the group from the attached container. This is the * opposite of the SET_CONTAINER call and returns the group to * an initial state. All device file descriptors must be released * prior to calling this interface. When removing the last group * from a container, the IOMMU will be disabled and all state lost, * effectively also returning the VFIO file descriptor to an initial * state. * Return: 0 on success, -errno on failure. * Availability: When attached to container */ #define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5) /** * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char) * * Return a new file descriptor for the device object described by * the provided string. The string should match a device listed in * the devices subdirectory of the IOMMU group sysfs entry. The * group containing the device must already be added to this context. * Return: new file descriptor on success, -errno on failure. * Availability: When attached to container */ #define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6) /* --------------- IOCTLs for DEVICE file descriptors --------------- */ /** * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7, * struct vfio_device_info) * * Retrieve information about the device. Fills in provided * struct vfio_device_info. Caller sets argsz. * Return: 0 on success, -errno on failure. */ struct vfio_device_info { __u32 argsz; __u32 flags; #define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */ #define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */ #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */ #define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */ #define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */ #define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */ #define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */ __u32 num_regions; /* Max region index + 1 */ __u32 num_irqs; /* Max IRQ index + 1 */ __u32 cap_offset; /* Offset within info struct of first cap */ }; #define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7) /* * Vendor driver using Mediated device framework should provide device_api * attribute in supported type attribute groups. Device API string should be one * of the following corresponding to device flags in vfio_device_info structure. */ #define VFIO_DEVICE_API_PCI_STRING "vfio-pci" #define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform" #define VFIO_DEVICE_API_AMBA_STRING "vfio-amba" #define VFIO_DEVICE_API_CCW_STRING "vfio-ccw" #define VFIO_DEVICE_API_AP_STRING "vfio-ap" /* * The following capabilities are unique to s390 zPCI devices. Their contents * are further-defined in vfio_zdev.h */ #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4 /** * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8, * struct vfio_region_info) * * Retrieve information about a device region. Caller provides * struct vfio_region_info with index value set. Caller sets argsz. * Implementation of region mapping is bus driver specific. This is * intended to describe MMIO, I/O port, as well as bus specific * regions (ex. PCI config space). Zero sized regions may be used * to describe unimplemented regions (ex. unimplemented PCI BARs). * Return: 0 on success, -errno on failure. */ struct vfio_region_info { __u32 argsz; __u32 flags; #define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */ #define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */ #define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */ #define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */ __u32 index; /* Region index */ __u32 cap_offset; /* Offset within info struct of first cap */ __u64 size; /* Region size (bytes) */ __u64 offset; /* Region offset from start of device fd */ }; #define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8) /* * The sparse mmap capability allows finer granularity of specifying areas * within a region with mmap support. When specified, the user should only * mmap the offset ranges specified by the areas array. mmaps outside of the * areas specified may fail (such as the range covering a PCI MSI-X table) or * may result in improper device behavior. * * The structures below define version 1 of this capability. */ #define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1 struct vfio_region_sparse_mmap_area { __u64 offset; /* Offset of mmap'able area within region */ __u64 size; /* Size of mmap'able area */ }; struct vfio_region_info_cap_sparse_mmap { struct vfio_info_cap_header header; __u32 nr_areas; __u32 reserved; struct vfio_region_sparse_mmap_area areas[]; }; /* * The device specific type capability allows regions unique to a specific * device or class of devices to be exposed. This helps solve the problem for * vfio bus drivers of defining which region indexes correspond to which region * on the device, without needing to resort to static indexes, as done by * vfio-pci. For instance, if we were to go back in time, we might remove * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd * make a "VGA" device specific type to describe the VGA access space. This * means that non-VGA devices wouldn't need to waste this index, and thus the * address space associated with it due to implementation of device file * descriptor offsets in vfio-pci. * * The current implementation is now part of the user ABI, so we can't use this * for VGA, but there are other upcoming use cases, such as opregions for Intel * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll * use this for future additions. * * The structure below defines version 1 of this capability. */ #define VFIO_REGION_INFO_CAP_TYPE 2 struct vfio_region_info_cap_type { struct vfio_info_cap_header header; __u32 type; /* global per bus driver */ __u32 subtype; /* type specific */ }; /* * List of region types, global per bus driver. * If you introduce a new type, please add it here. */ /* PCI region type containing a PCI vendor part */ #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31) #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff) #define VFIO_REGION_TYPE_GFX (1) #define VFIO_REGION_TYPE_CCW (2) #define VFIO_REGION_TYPE_MIGRATION (3) /* sub-types for VFIO_REGION_TYPE_PCI_* */ /* 8086 vendor PCI sub-types */ #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1) #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2) #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3) /* 10de vendor PCI sub-types */ /* * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space. */ #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1) /* 1014 vendor PCI sub-types */ /* * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU * to do TLB invalidation on a GPU. */ #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1) /* sub-types for VFIO_REGION_TYPE_GFX */ #define VFIO_REGION_SUBTYPE_GFX_EDID (1) /** * struct vfio_region_gfx_edid - EDID region layout. * * Set display link state and EDID blob. * * The EDID blob has monitor information such as brand, name, serial * number, physical size, supported video modes and more. * * This special region allows userspace (typically qemu) set a virtual * EDID for the virtual monitor, which allows a flexible display * configuration. * * For the edid blob spec look here: * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data * * On linux systems you can find the EDID blob in sysfs: * /sys/class/drm/${card}/${connector}/edid * * You can use the edid-decode ulility (comes with xorg-x11-utils) to * decode the EDID blob. * * @edid_offset: location of the edid blob, relative to the * start of the region (readonly). * @edid_max_size: max size of the edid blob (readonly). * @edid_size: actual edid size (read/write). * @link_state: display link state (read/write). * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on. * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off. * @max_xres: max display width (0 == no limitation, readonly). * @max_yres: max display height (0 == no limitation, readonly). * * EDID update protocol: * (1) set link-state to down. * (2) update edid blob and size. * (3) set link-state to up. */ struct vfio_region_gfx_edid { __u32 edid_offset; __u32 edid_max_size; __u32 edid_size; __u32 max_xres; __u32 max_yres; __u32 link_state; #define VFIO_DEVICE_GFX_LINK_STATE_UP 1 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2 }; /* sub-types for VFIO_REGION_TYPE_CCW */ #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1) #define VFIO_REGION_SUBTYPE_CCW_SCHIB (2) #define VFIO_REGION_SUBTYPE_CCW_CRW (3) /* sub-types for VFIO_REGION_TYPE_MIGRATION */ #define VFIO_REGION_SUBTYPE_MIGRATION (1) /* * The structure vfio_device_migration_info is placed at the 0th offset of * the VFIO_REGION_SUBTYPE_MIGRATION region to get and set VFIO device related * migration information. Field accesses from this structure are only supported * at their native width and alignment. Otherwise, the result is undefined and * vendor drivers should return an error. * * device_state: (read/write) * - The user application writes to this field to inform the vendor driver * about the device state to be transitioned to. * - The vendor driver should take the necessary actions to change the * device state. After successful transition to a given state, the * vendor driver should return success on write(device_state, state) * system call. If the device state transition fails, the vendor driver * should return an appropriate -errno for the fault condition. * - On the user application side, if the device state transition fails, * that is, if write(device_state, state) returns an error, read * device_state again to determine the current state of the device from * the vendor driver. * - The vendor driver should return previous state of the device unless * the vendor driver has encountered an internal error, in which case * the vendor driver may report the device_state VFIO_DEVICE_STATE_ERROR. * - The user application must use the device reset ioctl to recover the * device from VFIO_DEVICE_STATE_ERROR state. If the device is * indicated to be in a valid device state by reading device_state, the * user application may attempt to transition the device to any valid * state reachable from the current state or terminate itself. * * device_state consists of 3 bits: * - If bit 0 is set, it indicates the _RUNNING state. If bit 0 is clear, * it indicates the _STOP state. When the device state is changed to * _STOP, driver should stop the device before write() returns. * - If bit 1 is set, it indicates the _SAVING state, which means that the * driver should start gathering device state information that will be * provided to the VFIO user application to save the device's state. * - If bit 2 is set, it indicates the _RESUMING state, which means that * the driver should prepare to resume the device. Data provided through * the migration region should be used to resume the device. * Bits 3 - 31 are reserved for future use. To preserve them, the user * application should perform a read-modify-write operation on this * field when modifying the specified bits. * * +------- _RESUMING * |+------ _SAVING * ||+----- _RUNNING * ||| * 000b => Device Stopped, not saving or resuming * 001b => Device running, which is the default state * 010b => Stop the device & save the device state, stop-and-copy state * 011b => Device running and save the device state, pre-copy state * 100b => Device stopped and the device state is resuming * 101b => Invalid state * 110b => Error state * 111b => Invalid state * * State transitions: * * _RESUMING _RUNNING Pre-copy Stop-and-copy _STOP * (100b) (001b) (011b) (010b) (000b) * 0. Running or default state * | * * 1. Normal Shutdown (optional) * |------------------------------------->| * * 2. Save the state or suspend * |------------------------->|---------->| * * 3. Save the state during live migration * |----------->|------------>|---------->| * * 4. Resuming * |<---------| * * 5. Resumed * |--------->| * * 0. Default state of VFIO device is _RUNNING when the user application starts. * 1. During normal shutdown of the user application, the user application may * optionally change the VFIO device state from _RUNNING to _STOP. This * transition is optional. The vendor driver must support this transition but * must not require it. * 2. When the user application saves state or suspends the application, the * device state transitions from _RUNNING to stop-and-copy and then to _STOP. * On state transition from _RUNNING to stop-and-copy, driver must stop the * device, save the device state and send it to the application through the * migration region. The sequence to be followed for such transition is given * below. * 3. In live migration of user application, the state transitions from _RUNNING * to pre-copy, to stop-and-copy, and to _STOP. * On state transition from _RUNNING to pre-copy, the driver should start * gathering the device state while the application is still running and send * the device state data to application through the migration region. * On state transition from pre-copy to stop-and-copy, the driver must stop * the device, save the device state and send it to the user application * through the migration region. * Vendor drivers must support the pre-copy state even for implementations * where no data is provided to the user before the stop-and-copy state. The * user must not be required to consume all migration data before the device * transitions to a new state, including the stop-and-copy state. * The sequence to be followed for above two transitions is given below. * 4. To start the resuming phase, the device state should be transitioned from * the _RUNNING to the _RESUMING state. * In the _RESUMING state, the driver should use the device state data * received through the migration region to resume the device. * 5. After providing saved device data to the driver, the application should * change the state from _RESUMING to _RUNNING. * * reserved: * Reads on this field return zero and writes are ignored. * * pending_bytes: (read only) * The number of pending bytes still to be migrated from the vendor driver. * * data_offset: (read only) * The user application should read data_offset field from the migration * region. The user application should read the device data from this * offset within the migration region during the _SAVING state or write * the device data during the _RESUMING state. See below for details of * sequence to be followed. * * data_size: (read/write) * The user application should read data_size to get the size in bytes of * the data copied in the migration region during the _SAVING state and * write the size in bytes of the data copied in the migration region * during the _RESUMING state. * * The format of the migration region is as follows: * ------------------------------------------------------------------ * |vfio_device_migration_info| data section | * | | /////////////////////////////// | * ------------------------------------------------------------------ * ^ ^ * offset 0-trapped part data_offset * * The structure vfio_device_migration_info is always followed by the data * section in the region, so data_offset will always be nonzero. The offset * from where the data is copied is decided by the kernel driver. The data * section can be trapped, mmapped, or partitioned, depending on how the kernel * driver defines the data section. The data section partition can be defined * as mapped by the sparse mmap capability. If mmapped, data_offset must be * page aligned, whereas initial section which contains the * vfio_device_migration_info structure, might not end at the offset, which is * page aligned. The user is not required to access through mmap regardless * of the capabilities of the region mmap. * The vendor driver should determine whether and how to partition the data * section. The vendor driver should return data_offset accordingly. * * The sequence to be followed while in pre-copy state and stop-and-copy state * is as follows: * a. Read pending_bytes, indicating the start of a new iteration to get device * data. Repeated read on pending_bytes at this stage should have no side * effects. * If pending_bytes == 0, the user application should not iterate to get data * for that device. * If pending_bytes > 0, perform the following steps. * b. Read data_offset, indicating that the vendor driver should make data * available through the data section. The vendor driver should return this * read operation only after data is available from (region + data_offset) * to (region + data_offset + data_size). * c. Read data_size, which is the amount of data in bytes available through * the migration region. * Read on data_offset and data_size should return the offset and size of * the current buffer if the user application reads data_offset and * data_size more than once here. * d. Read data_size bytes of data from (region + data_offset) from the * migration region. * e. Process the data. * f. Read pending_bytes, which indicates that the data from the previous * iteration has been read. If pending_bytes > 0, go to step b. * * The user application can transition from the _SAVING|_RUNNING * (pre-copy state) to the _SAVING (stop-and-copy) state regardless of the * number of pending bytes. The user application should iterate in _SAVING * (stop-and-copy) until pending_bytes is 0. * * The sequence to be followed while _RESUMING device state is as follows: * While data for this device is available, repeat the following steps: * a. Read data_offset from where the user application should write data. * b. Write migration data starting at the migration region + data_offset for * the length determined by data_size from the migration source. * c. Write data_size, which indicates to the vendor driver that data is * written in the migration region. Vendor driver must return this write * operations on consuming data. Vendor driver should apply the * user-provided migration region data to the device resume state. * * If an error occurs during the above sequences, the vendor driver can return * an error code for next read() or write() operation, which will terminate the * loop. The user application should then take the next necessary action, for * example, failing migration or terminating the user application. * * For the user application, data is opaque. The user application should write * data in the same order as the data is received and the data should be of * same transaction size at the source. */ struct vfio_device_migration_info { __u32 device_state; /* VFIO device state */ #define VFIO_DEVICE_STATE_STOP (0) #define VFIO_DEVICE_STATE_RUNNING (1 << 0) #define VFIO_DEVICE_STATE_SAVING (1 << 1) #define VFIO_DEVICE_STATE_RESUMING (1 << 2) #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_RUNNING | \ VFIO_DEVICE_STATE_SAVING | \ VFIO_DEVICE_STATE_RESUMING) #define VFIO_DEVICE_STATE_VALID(state) \ (state & VFIO_DEVICE_STATE_RESUMING ? \ (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_RESUMING : 1) #define VFIO_DEVICE_STATE_IS_ERROR(state) \ ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_SAVING | \ VFIO_DEVICE_STATE_RESUMING)) #define VFIO_DEVICE_STATE_SET_ERROR(state) \ ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_SATE_SAVING | \ VFIO_DEVICE_STATE_RESUMING) __u32 reserved; __u64 pending_bytes; __u64 data_offset; __u64 data_size; }; /* * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped * which allows direct access to non-MSIX registers which happened to be within * the same system page. * * Even though the userspace gets direct access to the MSIX data, the existing * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration. */ #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3 /* * Capability with compressed real address (aka SSA - small system address) * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing * and by the userspace to associate a NVLink bridge with a GPU. */ #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4 struct vfio_region_info_cap_nvlink2_ssatgt { struct vfio_info_cap_header header; __u64 tgt; }; /* * Capability with an NVLink link speed. The value is read by * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed" * property in the device tree. The value is fixed in the hardware * and failing to provide the correct value results in the link * not working with no indication from the driver why. */ #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5 struct vfio_region_info_cap_nvlink2_lnkspd { struct vfio_info_cap_header header; __u32 link_speed; __u32 __pad; }; /** * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9, * struct vfio_irq_info) * * Retrieve information about a device IRQ. Caller provides * struct vfio_irq_info with index value set. Caller sets argsz. * Implementation of IRQ mapping is bus driver specific. Indexes * using multiple IRQs are primarily intended to support MSI-like * interrupt blocks. Zero count irq blocks may be used to describe * unimplemented interrupt types. * * The EVENTFD flag indicates the interrupt index supports eventfd based * signaling. * * The MASKABLE flags indicates the index supports MASK and UNMASK * actions described below. * * AUTOMASKED indicates that after signaling, the interrupt line is * automatically masked by VFIO and the user needs to unmask the line * to receive new interrupts. This is primarily intended to distinguish * level triggered interrupts. * * The NORESIZE flag indicates that the interrupt lines within the index * are setup as a set and new subindexes cannot be enabled without first * disabling the entire index. This is used for interrupts like PCI MSI * and MSI-X where the driver may only use a subset of the available * indexes, but VFIO needs to enable a specific number of vectors * upfront. In the case of MSI-X, where the user can enable MSI-X and * then add and unmask vectors, it's up to userspace to make the decision * whether to allocate the maximum supported number of vectors or tear * down setup and incrementally increase the vectors as each is enabled. */ struct vfio_irq_info { __u32 argsz; __u32 flags; #define VFIO_IRQ_INFO_EVENTFD (1 << 0) #define VFIO_IRQ_INFO_MASKABLE (1 << 1) #define VFIO_IRQ_INFO_AUTOMASKED (1 << 2) #define VFIO_IRQ_INFO_NORESIZE (1 << 3) __u32 index; /* IRQ index */ __u32 count; /* Number of IRQs within this index */ }; #define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9) /** * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set) * * Set signaling, masking, and unmasking of interrupts. Caller provides * struct vfio_irq_set with all fields set. 'start' and 'count' indicate * the range of subindexes being specified. * * The DATA flags specify the type of data provided. If DATA_NONE, the * operation performs the specified action immediately on the specified * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]: * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1. * * DATA_BOOL allows sparse support for the same on arrays of interrupts. * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]): * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3, * data = {1,0,1} * * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd. * A value of -1 can be used to either de-assign interrupts if already * assigned or skip un-assigned interrupts. For example, to set an eventfd * to be trigger for interrupts [0,0] and [0,2]: * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3, * data = {fd1, -1, fd2} * If index [0,1] is previously set, two count = 1 ioctls calls would be * required to set [0,0] and [0,2] without changing [0,1]. * * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used * with ACTION_TRIGGER to perform kernel level interrupt loopback testing * from userspace (ie. simulate hardware triggering). * * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER * enables the interrupt index for the device. Individual subindex interrupts * can be disabled using the -1 value for DATA_EVENTFD or the index can be * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0. * * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while * ACTION_TRIGGER specifies kernel->user signaling. */ struct vfio_irq_set { __u32 argsz; __u32 flags; #define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */ #define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */ #define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */ #define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */ #define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */ #define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */ __u32 index; __u32 start; __u32 count; __u8 data[]; }; #define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10) #define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \ VFIO_IRQ_SET_DATA_BOOL | \ VFIO_IRQ_SET_DATA_EVENTFD) #define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \ VFIO_IRQ_SET_ACTION_UNMASK | \ VFIO_IRQ_SET_ACTION_TRIGGER) /** * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11) * * Reset a device. */ #define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11) /* * The VFIO-PCI bus driver makes use of the following fixed region and * IRQ index mapping. Unimplemented regions return a size of zero. * Unimplemented IRQ types return a count of zero. */ enum { VFIO_PCI_BAR0_REGION_INDEX, VFIO_PCI_BAR1_REGION_INDEX, VFIO_PCI_BAR2_REGION_INDEX, VFIO_PCI_BAR3_REGION_INDEX, VFIO_PCI_BAR4_REGION_INDEX, VFIO_PCI_BAR5_REGION_INDEX, VFIO_PCI_ROM_REGION_INDEX, VFIO_PCI_CONFIG_REGION_INDEX, /* * Expose VGA regions defined for PCI base class 03, subclass 00. * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented * range is found at it's identity mapped offset from the region * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas * between described ranges are unimplemented. */ VFIO_PCI_VGA_REGION_INDEX, VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */ /* device specific cap to define content. */ }; enum { VFIO_PCI_INTX_IRQ_INDEX, VFIO_PCI_MSI_IRQ_INDEX, VFIO_PCI_MSIX_IRQ_INDEX, VFIO_PCI_ERR_IRQ_INDEX, VFIO_PCI_REQ_IRQ_INDEX, VFIO_PCI_NUM_IRQS }; /* * The vfio-ccw bus driver makes use of the following fixed region and * IRQ index mapping. Unimplemented regions return a size of zero. * Unimplemented IRQ types return a count of zero. */ enum { VFIO_CCW_CONFIG_REGION_INDEX, VFIO_CCW_NUM_REGIONS }; enum { VFIO_CCW_IO_IRQ_INDEX, VFIO_CCW_CRW_IRQ_INDEX, VFIO_CCW_REQ_IRQ_INDEX, VFIO_CCW_NUM_IRQS }; /** * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IORW(VFIO_TYPE, VFIO_BASE + 12, * struct vfio_pci_hot_reset_info) * * Return: 0 on success, -errno on failure: * -enospc = insufficient buffer, -enodev = unsupported for device. */ struct vfio_pci_dependent_device { __u32 group_id; __u16 segment; __u8 bus; __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */ }; struct vfio_pci_hot_reset_info { __u32 argsz; __u32 flags; __u32 count; struct vfio_pci_dependent_device devices[]; }; #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) /** * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13, * struct vfio_pci_hot_reset) * * Return: 0 on success, -errno on failure. */ struct vfio_pci_hot_reset { __u32 argsz; __u32 flags; __u32 count; __s32 group_fds[]; }; #define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13) /** * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14, * struct vfio_device_query_gfx_plane) * * Set the drm_plane_type and flags, then retrieve the gfx plane info. * * flags supported: * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no * support for dma-buf. * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set * to ask if the mdev supports region. 0 on support, -EINVAL on no * support for region. * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set * with each call to query the plane info. * - Others are invalid and return -EINVAL. * * Note: * 1. Plane could be disabled by guest. In that case, success will be * returned with zero-initialized drm_format, size, width and height * fields. * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available * * Return: 0 on success, -errno on other failure. */ struct vfio_device_gfx_plane_info { __u32 argsz; __u32 flags; #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0) #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1) #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2) /* in */ __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */ /* out */ __u32 drm_format; /* drm format of plane */ __u64 drm_format_mod; /* tiled mode */ __u32 width; /* width of plane */ __u32 height; /* height of plane */ __u32 stride; /* stride of plane */ __u32 size; /* size of plane in bytes, align on page*/ __u32 x_pos; /* horizontal position of cursor plane */ __u32 y_pos; /* vertical position of cursor plane*/ __u32 x_hot; /* horizontal position of cursor hotspot */ __u32 y_hot; /* vertical position of cursor hotspot */ union { __u32 region_index; /* region index */ __u32 dmabuf_id; /* dma-buf id */ }; }; #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14) /** * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32) * * Return a new dma-buf file descriptor for an exposed guest framebuffer * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_ * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer. */ #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15) /** * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16, * struct vfio_device_ioeventfd) * * Perform a write to the device at the specified device fd offset, with * the specified data and width when the provided eventfd is triggered. * vfio bus drivers may not support this for all regions, for all widths, * or at all. vfio-pci currently only enables support for BAR regions, * excluding the MSI-X vector table. * * Return: 0 on success, -errno on failure. */ struct vfio_device_ioeventfd { __u32 argsz; __u32 flags; #define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */ #define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */ #define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */ #define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */ #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf) __u64 offset; /* device fd offset of write */ __u64 data; /* data to be written */ __s32 fd; /* -1 for de-assignment */ }; #define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16) /** * VFIO_DEVICE_FEATURE - _IORW(VFIO_TYPE, VFIO_BASE + 17, * struct vfio_device_feature) * * Get, set, or probe feature data of the device. The feature is selected * using the FEATURE_MASK portion of the flags field. Support for a feature * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe * may optionally include the GET and/or SET bits to determine read vs write * access of the feature respectively. Probing a feature will return success * if the feature is supported and all of the optionally indicated GET/SET * methods are supported. The format of the data portion of the structure is * specific to the given feature. The data portion is not required for * probing. GET and SET are mutually exclusive, except for use with PROBE. * * Return 0 on success, -errno on failure. */ struct vfio_device_feature { __u32 argsz; __u32 flags; #define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */ #define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */ #define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */ #define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */ __u8 data[]; }; #define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17) /* * Provide support for setting a PCI VF Token, which is used as a shared * secret between PF and VF drivers. This feature may only be set on a * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing * open VFs. Data provided when setting this feature is a 16-byte array * (__u8 b[16]), representing a UUID. */ #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0) /* -------- API for Type1 VFIO IOMMU -------- */ /** * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info) * * Retrieve information about the IOMMU object. Fills in provided * struct vfio_iommu_info. Caller sets argsz. * * XXX Should we do these by CHECK_EXTENSION too? */ struct vfio_iommu_type1_info { __u32 argsz; __u32 flags; #define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */ #define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */ __u64 iova_pgsizes; /* Bitmap of supported page sizes */ __u32 cap_offset; /* Offset within info struct of first cap */ }; /* * The IOVA capability allows to report the valid IOVA range(s) * excluding any non-relaxable reserved regions exposed by * devices attached to the container. Any DMA map attempt * outside the valid iova range will return error. * * The structures below define version 1 of this capability. */ #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1 struct vfio_iova_range { __u64 start; __u64 end; }; struct vfio_iommu_type1_info_cap_iova_range { struct vfio_info_cap_header header; __u32 nr_iovas; __u32 reserved; struct vfio_iova_range iova_ranges[]; }; /* * The migration capability allows to report supported features for migration. * * The structures below define version 1 of this capability. * * The existence of this capability indicates that IOMMU kernel driver supports * dirty page logging. * * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty * page logging. * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap * size in bytes that can be used by user applications when getting the dirty * bitmap. */ #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2 struct vfio_iommu_type1_info_cap_migration { struct vfio_info_cap_header header; __u32 flags; __u64 pgsize_bitmap; __u64 max_dirty_bitmap_size; /* in bytes */ }; /* * The DMA available capability allows to report the current number of * simultaneously outstanding DMA mappings that are allowed. * * The structure below defines version 1 of this capability. * * avail: specifies the current number of outstanding DMA mappings allowed. */ #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3 struct vfio_iommu_type1_info_dma_avail { struct vfio_info_cap_header header; __u32 avail; }; #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) /** * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map) * * Map process virtual addresses to IO virtual addresses using the * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required. */ struct vfio_iommu_type1_dma_map { __u32 argsz; __u32 flags; #define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */ #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */ __u64 vaddr; /* Process virtual address */ __u64 iova; /* IO virtual address */ __u64 size; /* Size of mapping (bytes) */ }; #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13) struct vfio_bitmap { __u64 pgsize; /* page size for bitmap in bytes */ __u64 size; /* in bytes */ __u64 *data; /* one bit per page */ }; /** * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14, * struct vfio_dma_unmap) * * Unmap IO virtual addresses using the provided struct vfio_dma_unmap. * Caller sets argsz. The actual unmapped size is returned in the size * field. No guarantee is made to the user that arbitrary unmaps of iova * or size different from those used in the original mapping call will * succeed. * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap * before unmapping IO virtual addresses. When this flag is set, the user must * provide a struct vfio_bitmap in data[]. User must provide zero-allocated * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field. * A bit in the bitmap represents one page, of user provided page size in * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set * indicates that the page at that offset from iova is dirty. A Bitmap of the * pages in the range of unmapped size is returned in the user-provided * vfio_bitmap.data. */ struct vfio_iommu_type1_dma_unmap { __u32 argsz; __u32 flags; #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0) __u64 iova; /* IO virtual address */ __u64 size; /* Size of mapping (bytes) */ __u8 data[]; }; #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14) /* * IOCTLs to enable/disable IOMMU container usage. * No parameters are supported. */ #define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15) #define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16) /** * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17, * struct vfio_iommu_type1_dirty_bitmap) * IOCTL is used for dirty pages logging. * Caller should set flag depending on which operation to perform, details as * below: * * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs * the IOMMU driver to log pages that are dirtied or potentially dirtied by * the device; designed to be used when a migration is in progress. Dirty pages * are logged until logging is disabled by user application by calling the IOCTL * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag. * * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs * the IOMMU driver to stop logging dirtied pages. * * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set * returns the dirty pages bitmap for IOMMU container for a given IOVA range. * The user must specify the IOVA range and the pgsize through the structure * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface * supports getting a bitmap of the smallest supported pgsize only and can be * modified in future to get a bitmap of any specified supported pgsize. The * user must provide a zeroed memory area for the bitmap memory and specify its * size in bitmap.size. One bit is used to represent one page consecutively * starting from iova offset. The user should provide page size in bitmap.pgsize * field. A bit set in the bitmap indicates that the page at that offset from * iova is dirty. The caller must set argsz to a value including the size of * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the * actual bitmap. If dirty pages logging is not enabled, an error will be * returned. * * Only one of the flags _START, _STOP and _GET may be specified at a time. * */ struct vfio_iommu_type1_dirty_bitmap { __u32 argsz; __u32 flags; #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0) #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1) #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2) __u8 data[]; }; struct vfio_iommu_type1_dirty_bitmap_get { __u64 iova; /* IO virtual address */ __u64 size; /* Size of iova range */ struct vfio_bitmap bitmap; }; #define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17) /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */ /* * The SPAPR TCE DDW info struct provides the information about * the details of Dynamic DMA window capability. * * @pgsizes contains a page size bitmask, 4K/64K/16M are supported. * @max_dynamic_windows_supported tells the maximum number of windows * which the platform can create. * @levels tells the maximum number of levels in multi-level IOMMU tables; * this allows splitting a table into smaller chunks which reduces * the amount of physically contiguous memory required for the table. */ struct vfio_iommu_spapr_tce_ddw_info { __u64 pgsizes; /* Bitmap of supported page sizes */ __u32 max_dynamic_windows_supported; __u32 levels; }; /* * The SPAPR TCE info struct provides the information about the PCI bus * address ranges available for DMA, these values are programmed into * the hardware so the guest has to know that information. * * The DMA 32 bit window start is an absolute PCI bus address. * The IOVA address passed via map/unmap ioctls are absolute PCI bus * addresses too so the window works as a filter rather than an offset * for IOVA addresses. * * Flags supported: * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows * (DDW) support is present. @ddw is only supported when DDW is present. */ struct vfio_iommu_spapr_tce_info { __u32 argsz; __u32 flags; #define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */ __u32 dma32_window_start; /* 32 bit window start (bytes) */ __u32 dma32_window_size; /* 32 bit window size (bytes) */ struct vfio_iommu_spapr_tce_ddw_info ddw; }; #define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) /* * EEH PE operation struct provides ways to: * - enable/disable EEH functionality; * - unfreeze IO/DMA for frozen PE; * - read PE state; * - reset PE; * - configure PE; * - inject EEH error. */ struct vfio_eeh_pe_err { __u32 type; __u32 func; __u64 addr; __u64 mask; }; struct vfio_eeh_pe_op { __u32 argsz; __u32 flags; __u32 op; union { struct vfio_eeh_pe_err err; }; }; #define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */ #define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */ #define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */ #define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */ #define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */ #define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */ #define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */ #define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */ #define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */ #define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */ #define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */ #define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */ #define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */ #define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */ #define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */ #define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21) /** * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory) * * Registers user space memory where DMA is allowed. It pins * user pages and does the locked memory accounting so * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls * get faster. */ struct vfio_iommu_spapr_register_memory { __u32 argsz; __u32 flags; __u64 vaddr; /* Process virtual address */ __u64 size; /* Size of mapping (bytes) */ }; #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17) /** * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory) * * Unregisters user space memory registered with * VFIO_IOMMU_SPAPR_REGISTER_MEMORY. * Uses vfio_iommu_spapr_register_memory for parameters. */ #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18) /** * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create) * * Creates an additional TCE table and programs it (sets a new DMA window) * to every IOMMU group in the container. It receives page shift, window * size and number of levels in the TCE table being created. * * It allocates and returns an offset on a PCI bus of the new DMA window. */ struct vfio_iommu_spapr_tce_create { __u32 argsz; __u32 flags; /* in */ __u32 page_shift; __u32 __resv1; __u64 window_size; __u32 levels; __u32 __resv2; /* out */ __u64 start_addr; }; #define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19) /** * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove) * * Unprograms a TCE table from all groups in the container and destroys it. * It receives a PCI bus offset as a window id. */ struct vfio_iommu_spapr_tce_remove { __u32 argsz; __u32 flags; /* in */ __u64 start_addr; }; #define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20) /* ***************************************************************** */ #endif /* VFIO_H */