Server IP : 66.29.132.122 / Your IP : 18.225.234.108 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/opt/hc_python/lib/python3.8/site-packages/sqlalchemy/orm/ |
Upload File : |
# orm/util.py # Copyright (C) 2005-2024 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php # mypy: allow-untyped-defs, allow-untyped-calls from __future__ import annotations import enum import functools import re import types import typing from typing import AbstractSet from typing import Any from typing import Callable from typing import cast from typing import Dict from typing import FrozenSet from typing import Generic from typing import Iterable from typing import Iterator from typing import List from typing import Match from typing import Optional from typing import Sequence from typing import Tuple from typing import Type from typing import TYPE_CHECKING from typing import TypeVar from typing import Union import weakref from . import attributes # noqa from . import exc from ._typing import _O from ._typing import insp_is_aliased_class from ._typing import insp_is_mapper from ._typing import prop_is_relationship from .base import _class_to_mapper as _class_to_mapper from .base import _MappedAnnotationBase from .base import _never_set as _never_set # noqa: F401 from .base import _none_set as _none_set # noqa: F401 from .base import attribute_str as attribute_str # noqa: F401 from .base import class_mapper as class_mapper from .base import DynamicMapped from .base import InspectionAttr as InspectionAttr from .base import instance_str as instance_str # noqa: F401 from .base import Mapped from .base import object_mapper as object_mapper from .base import object_state as object_state # noqa: F401 from .base import opt_manager_of_class from .base import ORMDescriptor from .base import state_attribute_str as state_attribute_str # noqa: F401 from .base import state_class_str as state_class_str # noqa: F401 from .base import state_str as state_str # noqa: F401 from .base import WriteOnlyMapped from .interfaces import CriteriaOption from .interfaces import MapperProperty as MapperProperty from .interfaces import ORMColumnsClauseRole from .interfaces import ORMEntityColumnsClauseRole from .interfaces import ORMFromClauseRole from .path_registry import PathRegistry as PathRegistry from .. import event from .. import exc as sa_exc from .. import inspection from .. import sql from .. import util from ..engine.result import result_tuple from ..sql import coercions from ..sql import expression from ..sql import lambdas from ..sql import roles from ..sql import util as sql_util from ..sql import visitors from ..sql._typing import is_selectable from ..sql.annotation import SupportsCloneAnnotations from ..sql.base import ColumnCollection from ..sql.cache_key import HasCacheKey from ..sql.cache_key import MemoizedHasCacheKey from ..sql.elements import ColumnElement from ..sql.elements import KeyedColumnElement from ..sql.selectable import FromClause from ..util.langhelpers import MemoizedSlots from ..util.typing import de_stringify_annotation as _de_stringify_annotation from ..util.typing import ( de_stringify_union_elements as _de_stringify_union_elements, ) from ..util.typing import eval_name_only as _eval_name_only from ..util.typing import is_origin_of_cls from ..util.typing import Literal from ..util.typing import Protocol from ..util.typing import typing_get_origin if typing.TYPE_CHECKING: from ._typing import _EntityType from ._typing import _IdentityKeyType from ._typing import _InternalEntityType from ._typing import _ORMCOLEXPR from .context import _MapperEntity from .context import ORMCompileState from .mapper import Mapper from .path_registry import AbstractEntityRegistry from .query import Query from .relationships import RelationshipProperty from ..engine import Row from ..engine import RowMapping from ..sql._typing import _CE from ..sql._typing import _ColumnExpressionArgument from ..sql._typing import _EquivalentColumnMap from ..sql._typing import _FromClauseArgument from ..sql._typing import _OnClauseArgument from ..sql._typing import _PropagateAttrsType from ..sql.annotation import _SA from ..sql.base import ReadOnlyColumnCollection from ..sql.elements import BindParameter from ..sql.selectable import _ColumnsClauseElement from ..sql.selectable import Select from ..sql.selectable import Selectable from ..sql.visitors import anon_map from ..util.typing import _AnnotationScanType from ..util.typing import ArgsTypeProcotol _T = TypeVar("_T", bound=Any) all_cascades = frozenset( ( "delete", "delete-orphan", "all", "merge", "expunge", "save-update", "refresh-expire", "none", ) ) _de_stringify_partial = functools.partial( functools.partial, locals_=util.immutabledict( { "Mapped": Mapped, "WriteOnlyMapped": WriteOnlyMapped, "DynamicMapped": DynamicMapped, } ), ) # partial is practically useless as we have to write out the whole # function and maintain the signature anyway class _DeStringifyAnnotation(Protocol): def __call__( self, cls: Type[Any], annotation: _AnnotationScanType, originating_module: str, *, str_cleanup_fn: Optional[Callable[[str, str], str]] = None, include_generic: bool = False, ) -> Type[Any]: ... de_stringify_annotation = cast( _DeStringifyAnnotation, _de_stringify_partial(_de_stringify_annotation) ) class _DeStringifyUnionElements(Protocol): def __call__( self, cls: Type[Any], annotation: ArgsTypeProcotol, originating_module: str, *, str_cleanup_fn: Optional[Callable[[str, str], str]] = None, ) -> Type[Any]: ... de_stringify_union_elements = cast( _DeStringifyUnionElements, _de_stringify_partial(_de_stringify_union_elements), ) class _EvalNameOnly(Protocol): def __call__(self, name: str, module_name: str) -> Any: ... eval_name_only = cast(_EvalNameOnly, _de_stringify_partial(_eval_name_only)) class CascadeOptions(FrozenSet[str]): """Keeps track of the options sent to :paramref:`.relationship.cascade`""" _add_w_all_cascades = all_cascades.difference( ["all", "none", "delete-orphan"] ) _allowed_cascades = all_cascades _viewonly_cascades = ["expunge", "all", "none", "refresh-expire", "merge"] __slots__ = ( "save_update", "delete", "refresh_expire", "merge", "expunge", "delete_orphan", ) save_update: bool delete: bool refresh_expire: bool merge: bool expunge: bool delete_orphan: bool def __new__( cls, value_list: Optional[Union[Iterable[str], str]] ) -> CascadeOptions: if isinstance(value_list, str) or value_list is None: return cls.from_string(value_list) # type: ignore values = set(value_list) if values.difference(cls._allowed_cascades): raise sa_exc.ArgumentError( "Invalid cascade option(s): %s" % ", ".join( [ repr(x) for x in sorted( values.difference(cls._allowed_cascades) ) ] ) ) if "all" in values: values.update(cls._add_w_all_cascades) if "none" in values: values.clear() values.discard("all") self = super().__new__(cls, values) self.save_update = "save-update" in values self.delete = "delete" in values self.refresh_expire = "refresh-expire" in values self.merge = "merge" in values self.expunge = "expunge" in values self.delete_orphan = "delete-orphan" in values if self.delete_orphan and not self.delete: util.warn("The 'delete-orphan' cascade option requires 'delete'.") return self def __repr__(self): return "CascadeOptions(%r)" % (",".join([x for x in sorted(self)])) @classmethod def from_string(cls, arg): values = [c for c in re.split(r"\s*,\s*", arg or "") if c] return cls(values) def _validator_events(desc, key, validator, include_removes, include_backrefs): """Runs a validation method on an attribute value to be set or appended. """ if not include_backrefs: def detect_is_backref(state, initiator): impl = state.manager[key].impl return initiator.impl is not impl if include_removes: def append(state, value, initiator): if initiator.op is not attributes.OP_BULK_REPLACE and ( include_backrefs or not detect_is_backref(state, initiator) ): return validator(state.obj(), key, value, False) else: return value def bulk_set(state, values, initiator): if include_backrefs or not detect_is_backref(state, initiator): obj = state.obj() values[:] = [ validator(obj, key, value, False) for value in values ] def set_(state, value, oldvalue, initiator): if include_backrefs or not detect_is_backref(state, initiator): return validator(state.obj(), key, value, False) else: return value def remove(state, value, initiator): if include_backrefs or not detect_is_backref(state, initiator): validator(state.obj(), key, value, True) else: def append(state, value, initiator): if initiator.op is not attributes.OP_BULK_REPLACE and ( include_backrefs or not detect_is_backref(state, initiator) ): return validator(state.obj(), key, value) else: return value def bulk_set(state, values, initiator): if include_backrefs or not detect_is_backref(state, initiator): obj = state.obj() values[:] = [validator(obj, key, value) for value in values] def set_(state, value, oldvalue, initiator): if include_backrefs or not detect_is_backref(state, initiator): return validator(state.obj(), key, value) else: return value event.listen(desc, "append", append, raw=True, retval=True) event.listen(desc, "bulk_replace", bulk_set, raw=True) event.listen(desc, "set", set_, raw=True, retval=True) if include_removes: event.listen(desc, "remove", remove, raw=True, retval=True) def polymorphic_union( table_map, typecolname, aliasname="p_union", cast_nulls=True ): """Create a ``UNION`` statement used by a polymorphic mapper. See :ref:`concrete_inheritance` for an example of how this is used. :param table_map: mapping of polymorphic identities to :class:`_schema.Table` objects. :param typecolname: string name of a "discriminator" column, which will be derived from the query, producing the polymorphic identity for each row. If ``None``, no polymorphic discriminator is generated. :param aliasname: name of the :func:`~sqlalchemy.sql.expression.alias()` construct generated. :param cast_nulls: if True, non-existent columns, which are represented as labeled NULLs, will be passed into CAST. This is a legacy behavior that is problematic on some backends such as Oracle - in which case it can be set to False. """ colnames: util.OrderedSet[str] = util.OrderedSet() colnamemaps = {} types = {} for key in table_map: table = table_map[key] table = coercions.expect( roles.StrictFromClauseRole, table, allow_select=True ) table_map[key] = table m = {} for c in table.c: if c.key == typecolname: raise sa_exc.InvalidRequestError( "Polymorphic union can't use '%s' as the discriminator " "column due to mapped column %r; please apply the " "'typecolname' " "argument; this is available on " "ConcreteBase as '_concrete_discriminator_name'" % (typecolname, c) ) colnames.add(c.key) m[c.key] = c types[c.key] = c.type colnamemaps[table] = m def col(name, table): try: return colnamemaps[table][name] except KeyError: if cast_nulls: return sql.cast(sql.null(), types[name]).label(name) else: return sql.type_coerce(sql.null(), types[name]).label(name) result = [] for type_, table in table_map.items(): if typecolname is not None: result.append( sql.select( *( [col(name, table) for name in colnames] + [ sql.literal_column( sql_util._quote_ddl_expr(type_) ).label(typecolname) ] ) ).select_from(table) ) else: result.append( sql.select( *[col(name, table) for name in colnames] ).select_from(table) ) return sql.union_all(*result).alias(aliasname) def identity_key( class_: Optional[Type[_T]] = None, ident: Union[Any, Tuple[Any, ...]] = None, *, instance: Optional[_T] = None, row: Optional[Union[Row[Any], RowMapping]] = None, identity_token: Optional[Any] = None, ) -> _IdentityKeyType[_T]: r"""Generate "identity key" tuples, as are used as keys in the :attr:`.Session.identity_map` dictionary. This function has several call styles: * ``identity_key(class, ident, identity_token=token)`` This form receives a mapped class and a primary key scalar or tuple as an argument. E.g.:: >>> identity_key(MyClass, (1, 2)) (<class '__main__.MyClass'>, (1, 2), None) :param class: mapped class (must be a positional argument) :param ident: primary key, may be a scalar or tuple argument. :param identity_token: optional identity token .. versionadded:: 1.2 added identity_token * ``identity_key(instance=instance)`` This form will produce the identity key for a given instance. The instance need not be persistent, only that its primary key attributes are populated (else the key will contain ``None`` for those missing values). E.g.:: >>> instance = MyClass(1, 2) >>> identity_key(instance=instance) (<class '__main__.MyClass'>, (1, 2), None) In this form, the given instance is ultimately run though :meth:`_orm.Mapper.identity_key_from_instance`, which will have the effect of performing a database check for the corresponding row if the object is expired. :param instance: object instance (must be given as a keyword arg) * ``identity_key(class, row=row, identity_token=token)`` This form is similar to the class/tuple form, except is passed a database result row as a :class:`.Row` or :class:`.RowMapping` object. E.g.:: >>> row = engine.execute(\ text("select * from table where a=1 and b=2")\ ).first() >>> identity_key(MyClass, row=row) (<class '__main__.MyClass'>, (1, 2), None) :param class: mapped class (must be a positional argument) :param row: :class:`.Row` row returned by a :class:`_engine.CursorResult` (must be given as a keyword arg) :param identity_token: optional identity token .. versionadded:: 1.2 added identity_token """ if class_ is not None: mapper = class_mapper(class_) if row is None: if ident is None: raise sa_exc.ArgumentError("ident or row is required") return mapper.identity_key_from_primary_key( tuple(util.to_list(ident)), identity_token=identity_token ) else: return mapper.identity_key_from_row( row, identity_token=identity_token ) elif instance is not None: mapper = object_mapper(instance) return mapper.identity_key_from_instance(instance) else: raise sa_exc.ArgumentError("class or instance is required") class _TraceAdaptRole(enum.Enum): """Enumeration of all the use cases for ORMAdapter. ORMAdapter remains one of the most complicated aspects of the ORM, as it is used for in-place adaption of column expressions to be applied to a SELECT, replacing :class:`.Table` and other objects that are mapped to classes with aliases of those tables in the case of joined eager loading, or in the case of polymorphic loading as used with concrete mappings or other custom "with polymorphic" parameters, with whole user-defined subqueries. The enumerations provide an overview of all the use cases used by ORMAdapter, a layer of formality as to the introduction of new ORMAdapter use cases (of which none are anticipated), as well as a means to trace the origins of a particular ORMAdapter within runtime debugging. SQLAlchemy 2.0 has greatly scaled back ORM features which relied heavily on open-ended statement adaption, including the ``Query.with_polymorphic()`` method and the ``Query.select_from_entity()`` methods, favoring user-explicit aliasing schemes using the ``aliased()`` and ``with_polymorphic()`` standalone constructs; these still use adaption, however the adaption is applied in a narrower scope. """ # aliased() use that is used to adapt individual attributes at query # construction time ALIASED_INSP = enum.auto() # joinedload cases; typically adapt an ON clause of a relationship # join JOINEDLOAD_USER_DEFINED_ALIAS = enum.auto() JOINEDLOAD_PATH_WITH_POLYMORPHIC = enum.auto() JOINEDLOAD_MEMOIZED_ADAPTER = enum.auto() # polymorphic cases - these are complex ones that replace FROM # clauses, replacing tables with subqueries MAPPER_POLYMORPHIC_ADAPTER = enum.auto() WITH_POLYMORPHIC_ADAPTER = enum.auto() WITH_POLYMORPHIC_ADAPTER_RIGHT_JOIN = enum.auto() DEPRECATED_JOIN_ADAPT_RIGHT_SIDE = enum.auto() # the from_statement() case, used only to adapt individual attributes # from a given statement to local ORM attributes at result fetching # time. assigned to ORMCompileState._from_obj_alias ADAPT_FROM_STATEMENT = enum.auto() # the joinedload for queries that have LIMIT/OFFSET/DISTINCT case; # the query is placed inside of a subquery with the LIMIT/OFFSET/etc., # joinedloads are then placed on the outside. # assigned to ORMCompileState.compound_eager_adapter COMPOUND_EAGER_STATEMENT = enum.auto() # the legacy Query._set_select_from() case. # this is needed for Query's set operations (i.e. UNION, etc. ) # as well as "legacy from_self()", which while removed from 2.0 as # public API, is used for the Query.count() method. this one # still does full statement traversal # assigned to ORMCompileState._from_obj_alias LEGACY_SELECT_FROM_ALIAS = enum.auto() class ORMStatementAdapter(sql_util.ColumnAdapter): """ColumnAdapter which includes a role attribute.""" __slots__ = ("role",) def __init__( self, role: _TraceAdaptRole, selectable: Selectable, *, equivalents: Optional[_EquivalentColumnMap] = None, adapt_required: bool = False, allow_label_resolve: bool = True, anonymize_labels: bool = False, adapt_on_names: bool = False, adapt_from_selectables: Optional[AbstractSet[FromClause]] = None, ): self.role = role super().__init__( selectable, equivalents=equivalents, adapt_required=adapt_required, allow_label_resolve=allow_label_resolve, anonymize_labels=anonymize_labels, adapt_on_names=adapt_on_names, adapt_from_selectables=adapt_from_selectables, ) class ORMAdapter(sql_util.ColumnAdapter): """ColumnAdapter subclass which excludes adaptation of entities from non-matching mappers. """ __slots__ = ("role", "mapper", "is_aliased_class", "aliased_insp") is_aliased_class: bool aliased_insp: Optional[AliasedInsp[Any]] def __init__( self, role: _TraceAdaptRole, entity: _InternalEntityType[Any], *, equivalents: Optional[_EquivalentColumnMap] = None, adapt_required: bool = False, allow_label_resolve: bool = True, anonymize_labels: bool = False, selectable: Optional[Selectable] = None, limit_on_entity: bool = True, adapt_on_names: bool = False, adapt_from_selectables: Optional[AbstractSet[FromClause]] = None, ): self.role = role self.mapper = entity.mapper if selectable is None: selectable = entity.selectable if insp_is_aliased_class(entity): self.is_aliased_class = True self.aliased_insp = entity else: self.is_aliased_class = False self.aliased_insp = None super().__init__( selectable, equivalents, adapt_required=adapt_required, allow_label_resolve=allow_label_resolve, anonymize_labels=anonymize_labels, include_fn=self._include_fn if limit_on_entity else None, adapt_on_names=adapt_on_names, adapt_from_selectables=adapt_from_selectables, ) def _include_fn(self, elem): entity = elem._annotations.get("parentmapper", None) return not entity or entity.isa(self.mapper) or self.mapper.isa(entity) class AliasedClass( inspection.Inspectable["AliasedInsp[_O]"], ORMColumnsClauseRole[_O] ): r"""Represents an "aliased" form of a mapped class for usage with Query. The ORM equivalent of a :func:`~sqlalchemy.sql.expression.alias` construct, this object mimics the mapped class using a ``__getattr__`` scheme and maintains a reference to a real :class:`~sqlalchemy.sql.expression.Alias` object. A primary purpose of :class:`.AliasedClass` is to serve as an alternate within a SQL statement generated by the ORM, such that an existing mapped entity can be used in multiple contexts. A simple example:: # find all pairs of users with the same name user_alias = aliased(User) session.query(User, user_alias).\ join((user_alias, User.id > user_alias.id)).\ filter(User.name == user_alias.name) :class:`.AliasedClass` is also capable of mapping an existing mapped class to an entirely new selectable, provided this selectable is column- compatible with the existing mapped selectable, and it can also be configured in a mapping as the target of a :func:`_orm.relationship`. See the links below for examples. The :class:`.AliasedClass` object is constructed typically using the :func:`_orm.aliased` function. It also is produced with additional configuration when using the :func:`_orm.with_polymorphic` function. The resulting object is an instance of :class:`.AliasedClass`. This object implements an attribute scheme which produces the same attribute and method interface as the original mapped class, allowing :class:`.AliasedClass` to be compatible with any attribute technique which works on the original class, including hybrid attributes (see :ref:`hybrids_toplevel`). The :class:`.AliasedClass` can be inspected for its underlying :class:`_orm.Mapper`, aliased selectable, and other information using :func:`_sa.inspect`:: from sqlalchemy import inspect my_alias = aliased(MyClass) insp = inspect(my_alias) The resulting inspection object is an instance of :class:`.AliasedInsp`. .. seealso:: :func:`.aliased` :func:`.with_polymorphic` :ref:`relationship_aliased_class` :ref:`relationship_to_window_function` """ __name__: str def __init__( self, mapped_class_or_ac: _EntityType[_O], alias: Optional[FromClause] = None, name: Optional[str] = None, flat: bool = False, adapt_on_names: bool = False, with_polymorphic_mappers: Optional[Sequence[Mapper[Any]]] = None, with_polymorphic_discriminator: Optional[ColumnElement[Any]] = None, base_alias: Optional[AliasedInsp[Any]] = None, use_mapper_path: bool = False, represents_outer_join: bool = False, ): insp = cast( "_InternalEntityType[_O]", inspection.inspect(mapped_class_or_ac) ) mapper = insp.mapper nest_adapters = False if alias is None: if insp.is_aliased_class and insp.selectable._is_subquery: alias = insp.selectable.alias() else: alias = ( mapper._with_polymorphic_selectable._anonymous_fromclause( name=name, flat=flat, ) ) elif insp.is_aliased_class: nest_adapters = True assert alias is not None self._aliased_insp = AliasedInsp( self, insp, alias, name, ( with_polymorphic_mappers if with_polymorphic_mappers else mapper.with_polymorphic_mappers ), ( with_polymorphic_discriminator if with_polymorphic_discriminator is not None else mapper.polymorphic_on ), base_alias, use_mapper_path, adapt_on_names, represents_outer_join, nest_adapters, ) self.__name__ = f"aliased({mapper.class_.__name__})" @classmethod def _reconstitute_from_aliased_insp( cls, aliased_insp: AliasedInsp[_O] ) -> AliasedClass[_O]: obj = cls.__new__(cls) obj.__name__ = f"aliased({aliased_insp.mapper.class_.__name__})" obj._aliased_insp = aliased_insp if aliased_insp._is_with_polymorphic: for sub_aliased_insp in aliased_insp._with_polymorphic_entities: if sub_aliased_insp is not aliased_insp: ent = AliasedClass._reconstitute_from_aliased_insp( sub_aliased_insp ) setattr(obj, sub_aliased_insp.class_.__name__, ent) return obj def __getattr__(self, key: str) -> Any: try: _aliased_insp = self.__dict__["_aliased_insp"] except KeyError: raise AttributeError() else: target = _aliased_insp._target # maintain all getattr mechanics attr = getattr(target, key) # attribute is a method, that will be invoked against a # "self"; so just return a new method with the same function and # new self if hasattr(attr, "__call__") and hasattr(attr, "__self__"): return types.MethodType(attr.__func__, self) # attribute is a descriptor, that will be invoked against a # "self"; so invoke the descriptor against this self if hasattr(attr, "__get__"): attr = attr.__get__(None, self) # attributes within the QueryableAttribute system will want this # to be invoked so the object can be adapted if hasattr(attr, "adapt_to_entity"): attr = attr.adapt_to_entity(_aliased_insp) setattr(self, key, attr) return attr def _get_from_serialized( self, key: str, mapped_class: _O, aliased_insp: AliasedInsp[_O] ) -> Any: # this method is only used in terms of the # sqlalchemy.ext.serializer extension attr = getattr(mapped_class, key) if hasattr(attr, "__call__") and hasattr(attr, "__self__"): return types.MethodType(attr.__func__, self) # attribute is a descriptor, that will be invoked against a # "self"; so invoke the descriptor against this self if hasattr(attr, "__get__"): attr = attr.__get__(None, self) # attributes within the QueryableAttribute system will want this # to be invoked so the object can be adapted if hasattr(attr, "adapt_to_entity"): aliased_insp._weak_entity = weakref.ref(self) attr = attr.adapt_to_entity(aliased_insp) setattr(self, key, attr) return attr def __repr__(self) -> str: return "<AliasedClass at 0x%x; %s>" % ( id(self), self._aliased_insp._target.__name__, ) def __str__(self) -> str: return str(self._aliased_insp) @inspection._self_inspects class AliasedInsp( ORMEntityColumnsClauseRole[_O], ORMFromClauseRole, HasCacheKey, InspectionAttr, MemoizedSlots, inspection.Inspectable["AliasedInsp[_O]"], Generic[_O], ): """Provide an inspection interface for an :class:`.AliasedClass` object. The :class:`.AliasedInsp` object is returned given an :class:`.AliasedClass` using the :func:`_sa.inspect` function:: from sqlalchemy import inspect from sqlalchemy.orm import aliased my_alias = aliased(MyMappedClass) insp = inspect(my_alias) Attributes on :class:`.AliasedInsp` include: * ``entity`` - the :class:`.AliasedClass` represented. * ``mapper`` - the :class:`_orm.Mapper` mapping the underlying class. * ``selectable`` - the :class:`_expression.Alias` construct which ultimately represents an aliased :class:`_schema.Table` or :class:`_expression.Select` construct. * ``name`` - the name of the alias. Also is used as the attribute name when returned in a result tuple from :class:`_query.Query`. * ``with_polymorphic_mappers`` - collection of :class:`_orm.Mapper` objects indicating all those mappers expressed in the select construct for the :class:`.AliasedClass`. * ``polymorphic_on`` - an alternate column or SQL expression which will be used as the "discriminator" for a polymorphic load. .. seealso:: :ref:`inspection_toplevel` """ __slots__ = ( "__weakref__", "_weak_entity", "mapper", "selectable", "name", "_adapt_on_names", "with_polymorphic_mappers", "polymorphic_on", "_use_mapper_path", "_base_alias", "represents_outer_join", "persist_selectable", "local_table", "_is_with_polymorphic", "_with_polymorphic_entities", "_adapter", "_target", "__clause_element__", "_memoized_values", "_all_column_expressions", "_nest_adapters", ) _cache_key_traversal = [ ("name", visitors.ExtendedInternalTraversal.dp_string), ("_adapt_on_names", visitors.ExtendedInternalTraversal.dp_boolean), ("_use_mapper_path", visitors.ExtendedInternalTraversal.dp_boolean), ("_target", visitors.ExtendedInternalTraversal.dp_inspectable), ("selectable", visitors.ExtendedInternalTraversal.dp_clauseelement), ( "with_polymorphic_mappers", visitors.InternalTraversal.dp_has_cache_key_list, ), ("polymorphic_on", visitors.InternalTraversal.dp_clauseelement), ] mapper: Mapper[_O] selectable: FromClause _adapter: ORMAdapter with_polymorphic_mappers: Sequence[Mapper[Any]] _with_polymorphic_entities: Sequence[AliasedInsp[Any]] _weak_entity: weakref.ref[AliasedClass[_O]] """the AliasedClass that refers to this AliasedInsp""" _target: Union[Type[_O], AliasedClass[_O]] """the thing referenced by the AliasedClass/AliasedInsp. In the vast majority of cases, this is the mapped class. However it may also be another AliasedClass (alias of alias). """ def __init__( self, entity: AliasedClass[_O], inspected: _InternalEntityType[_O], selectable: FromClause, name: Optional[str], with_polymorphic_mappers: Optional[Sequence[Mapper[Any]]], polymorphic_on: Optional[ColumnElement[Any]], _base_alias: Optional[AliasedInsp[Any]], _use_mapper_path: bool, adapt_on_names: bool, represents_outer_join: bool, nest_adapters: bool, ): mapped_class_or_ac = inspected.entity mapper = inspected.mapper self._weak_entity = weakref.ref(entity) self.mapper = mapper self.selectable = self.persist_selectable = self.local_table = ( selectable ) self.name = name self.polymorphic_on = polymorphic_on self._base_alias = weakref.ref(_base_alias or self) self._use_mapper_path = _use_mapper_path self.represents_outer_join = represents_outer_join self._nest_adapters = nest_adapters if with_polymorphic_mappers: self._is_with_polymorphic = True self.with_polymorphic_mappers = with_polymorphic_mappers self._with_polymorphic_entities = [] for poly in self.with_polymorphic_mappers: if poly is not mapper: ent = AliasedClass( poly.class_, selectable, base_alias=self, adapt_on_names=adapt_on_names, use_mapper_path=_use_mapper_path, ) setattr(self.entity, poly.class_.__name__, ent) self._with_polymorphic_entities.append(ent._aliased_insp) else: self._is_with_polymorphic = False self.with_polymorphic_mappers = [mapper] self._adapter = ORMAdapter( _TraceAdaptRole.ALIASED_INSP, mapper, selectable=selectable, equivalents=mapper._equivalent_columns, adapt_on_names=adapt_on_names, anonymize_labels=True, # make sure the adapter doesn't try to grab other tables that # are not even the thing we are mapping, such as embedded # selectables in subqueries or CTEs. See issue #6060 adapt_from_selectables={ m.selectable for m in self.with_polymorphic_mappers if not adapt_on_names }, limit_on_entity=False, ) if nest_adapters: # supports "aliased class of aliased class" use case assert isinstance(inspected, AliasedInsp) self._adapter = inspected._adapter.wrap(self._adapter) self._adapt_on_names = adapt_on_names self._target = mapped_class_or_ac @classmethod def _alias_factory( cls, element: Union[_EntityType[_O], FromClause], alias: Optional[FromClause] = None, name: Optional[str] = None, flat: bool = False, adapt_on_names: bool = False, ) -> Union[AliasedClass[_O], FromClause]: if isinstance(element, FromClause): if adapt_on_names: raise sa_exc.ArgumentError( "adapt_on_names only applies to ORM elements" ) if name: return element.alias(name=name, flat=flat) else: return coercions.expect( roles.AnonymizedFromClauseRole, element, flat=flat ) else: return AliasedClass( element, alias=alias, flat=flat, name=name, adapt_on_names=adapt_on_names, ) @classmethod def _with_polymorphic_factory( cls, base: Union[Type[_O], Mapper[_O]], classes: Union[Literal["*"], Iterable[_EntityType[Any]]], selectable: Union[Literal[False, None], FromClause] = False, flat: bool = False, polymorphic_on: Optional[ColumnElement[Any]] = None, aliased: bool = False, innerjoin: bool = False, adapt_on_names: bool = False, name: Optional[str] = None, _use_mapper_path: bool = False, ) -> AliasedClass[_O]: primary_mapper = _class_to_mapper(base) if selectable not in (None, False) and flat: raise sa_exc.ArgumentError( "the 'flat' and 'selectable' arguments cannot be passed " "simultaneously to with_polymorphic()" ) mappers, selectable = primary_mapper._with_polymorphic_args( classes, selectable, innerjoin=innerjoin ) if aliased or flat: assert selectable is not None selectable = selectable._anonymous_fromclause(flat=flat) return AliasedClass( base, selectable, name=name, with_polymorphic_mappers=mappers, adapt_on_names=adapt_on_names, with_polymorphic_discriminator=polymorphic_on, use_mapper_path=_use_mapper_path, represents_outer_join=not innerjoin, ) @property def entity(self) -> AliasedClass[_O]: # to eliminate reference cycles, the AliasedClass is held weakly. # this produces some situations where the AliasedClass gets lost, # particularly when one is created internally and only the AliasedInsp # is passed around. # to work around this case, we just generate a new one when we need # it, as it is a simple class with very little initial state on it. ent = self._weak_entity() if ent is None: ent = AliasedClass._reconstitute_from_aliased_insp(self) self._weak_entity = weakref.ref(ent) return ent is_aliased_class = True "always returns True" def _memoized_method___clause_element__(self) -> FromClause: return self.selectable._annotate( { "parentmapper": self.mapper, "parententity": self, "entity_namespace": self, } )._set_propagate_attrs( {"compile_state_plugin": "orm", "plugin_subject": self} ) @property def entity_namespace(self) -> AliasedClass[_O]: return self.entity @property def class_(self) -> Type[_O]: """Return the mapped class ultimately represented by this :class:`.AliasedInsp`.""" return self.mapper.class_ @property def _path_registry(self) -> AbstractEntityRegistry: if self._use_mapper_path: return self.mapper._path_registry else: return PathRegistry.per_mapper(self) def __getstate__(self) -> Dict[str, Any]: return { "entity": self.entity, "mapper": self.mapper, "alias": self.selectable, "name": self.name, "adapt_on_names": self._adapt_on_names, "with_polymorphic_mappers": self.with_polymorphic_mappers, "with_polymorphic_discriminator": self.polymorphic_on, "base_alias": self._base_alias(), "use_mapper_path": self._use_mapper_path, "represents_outer_join": self.represents_outer_join, "nest_adapters": self._nest_adapters, } def __setstate__(self, state: Dict[str, Any]) -> None: self.__init__( # type: ignore state["entity"], state["mapper"], state["alias"], state["name"], state["with_polymorphic_mappers"], state["with_polymorphic_discriminator"], state["base_alias"], state["use_mapper_path"], state["adapt_on_names"], state["represents_outer_join"], state["nest_adapters"], ) def _merge_with(self, other: AliasedInsp[_O]) -> AliasedInsp[_O]: # assert self._is_with_polymorphic # assert other._is_with_polymorphic primary_mapper = other.mapper assert self.mapper is primary_mapper our_classes = util.to_set( mp.class_ for mp in self.with_polymorphic_mappers ) new_classes = {mp.class_ for mp in other.with_polymorphic_mappers} if our_classes == new_classes: return other else: classes = our_classes.union(new_classes) mappers, selectable = primary_mapper._with_polymorphic_args( classes, None, innerjoin=not other.represents_outer_join ) selectable = selectable._anonymous_fromclause(flat=True) return AliasedClass( primary_mapper, selectable, with_polymorphic_mappers=mappers, with_polymorphic_discriminator=other.polymorphic_on, use_mapper_path=other._use_mapper_path, represents_outer_join=other.represents_outer_join, )._aliased_insp def _adapt_element( self, expr: _ORMCOLEXPR, key: Optional[str] = None ) -> _ORMCOLEXPR: assert isinstance(expr, ColumnElement) d: Dict[str, Any] = { "parententity": self, "parentmapper": self.mapper, } if key: d["proxy_key"] = key # IMO mypy should see this one also as returning the same type # we put into it, but it's not return ( self._adapter.traverse(expr) ._annotate(d) ._set_propagate_attrs( {"compile_state_plugin": "orm", "plugin_subject": self} ) ) if TYPE_CHECKING: # establish compatibility with the _ORMAdapterProto protocol, # which in turn is compatible with _CoreAdapterProto. def _orm_adapt_element( self, obj: _CE, key: Optional[str] = None, ) -> _CE: ... else: _orm_adapt_element = _adapt_element def _entity_for_mapper(self, mapper): self_poly = self.with_polymorphic_mappers if mapper in self_poly: if mapper is self.mapper: return self else: return getattr( self.entity, mapper.class_.__name__ )._aliased_insp elif mapper.isa(self.mapper): return self else: assert False, "mapper %s doesn't correspond to %s" % (mapper, self) def _memoized_attr__get_clause(self): onclause, replacemap = self.mapper._get_clause return ( self._adapter.traverse(onclause), { self._adapter.traverse(col): param for col, param in replacemap.items() }, ) def _memoized_attr__memoized_values(self): return {} def _memoized_attr__all_column_expressions(self): if self._is_with_polymorphic: cols_plus_keys = self.mapper._columns_plus_keys( [ent.mapper for ent in self._with_polymorphic_entities] ) else: cols_plus_keys = self.mapper._columns_plus_keys() cols_plus_keys = [ (key, self._adapt_element(col)) for key, col in cols_plus_keys ] return ColumnCollection(cols_plus_keys) def _memo(self, key, callable_, *args, **kw): if key in self._memoized_values: return self._memoized_values[key] else: self._memoized_values[key] = value = callable_(*args, **kw) return value def __repr__(self): if self.with_polymorphic_mappers: with_poly = "(%s)" % ", ".join( mp.class_.__name__ for mp in self.with_polymorphic_mappers ) else: with_poly = "" return "<AliasedInsp at 0x%x; %s%s>" % ( id(self), self.class_.__name__, with_poly, ) def __str__(self): if self._is_with_polymorphic: return "with_polymorphic(%s, [%s])" % ( self._target.__name__, ", ".join( mp.class_.__name__ for mp in self.with_polymorphic_mappers if mp is not self.mapper ), ) else: return "aliased(%s)" % (self._target.__name__,) class _WrapUserEntity: """A wrapper used within the loader_criteria lambda caller so that we can bypass declared_attr descriptors on unmapped mixins, which normally emit a warning for such use. might also be useful for other per-lambda instrumentations should the need arise. """ __slots__ = ("subject",) def __init__(self, subject): self.subject = subject @util.preload_module("sqlalchemy.orm.decl_api") def __getattribute__(self, name): decl_api = util.preloaded.orm.decl_api subject = object.__getattribute__(self, "subject") if name in subject.__dict__ and isinstance( subject.__dict__[name], decl_api.declared_attr ): return subject.__dict__[name].fget(subject) else: return getattr(subject, name) class LoaderCriteriaOption(CriteriaOption): """Add additional WHERE criteria to the load for all occurrences of a particular entity. :class:`_orm.LoaderCriteriaOption` is invoked using the :func:`_orm.with_loader_criteria` function; see that function for details. .. versionadded:: 1.4 """ __slots__ = ( "root_entity", "entity", "deferred_where_criteria", "where_criteria", "_where_crit_orig", "include_aliases", "propagate_to_loaders", ) _traverse_internals = [ ("root_entity", visitors.ExtendedInternalTraversal.dp_plain_obj), ("entity", visitors.ExtendedInternalTraversal.dp_has_cache_key), ("where_criteria", visitors.InternalTraversal.dp_clauseelement), ("include_aliases", visitors.InternalTraversal.dp_boolean), ("propagate_to_loaders", visitors.InternalTraversal.dp_boolean), ] root_entity: Optional[Type[Any]] entity: Optional[_InternalEntityType[Any]] where_criteria: Union[ColumnElement[bool], lambdas.DeferredLambdaElement] deferred_where_criteria: bool include_aliases: bool propagate_to_loaders: bool _where_crit_orig: Any def __init__( self, entity_or_base: _EntityType[Any], where_criteria: Union[ _ColumnExpressionArgument[bool], Callable[[Any], _ColumnExpressionArgument[bool]], ], loader_only: bool = False, include_aliases: bool = False, propagate_to_loaders: bool = True, track_closure_variables: bool = True, ): entity = cast( "_InternalEntityType[Any]", inspection.inspect(entity_or_base, False), ) if entity is None: self.root_entity = cast("Type[Any]", entity_or_base) self.entity = None else: self.root_entity = None self.entity = entity self._where_crit_orig = where_criteria if callable(where_criteria): if self.root_entity is not None: wrap_entity = self.root_entity else: assert entity is not None wrap_entity = entity.entity self.deferred_where_criteria = True self.where_criteria = lambdas.DeferredLambdaElement( where_criteria, roles.WhereHavingRole, lambda_args=(_WrapUserEntity(wrap_entity),), opts=lambdas.LambdaOptions( track_closure_variables=track_closure_variables ), ) else: self.deferred_where_criteria = False self.where_criteria = coercions.expect( roles.WhereHavingRole, where_criteria ) self.include_aliases = include_aliases self.propagate_to_loaders = propagate_to_loaders @classmethod def _unreduce( cls, entity, where_criteria, include_aliases, propagate_to_loaders ): return LoaderCriteriaOption( entity, where_criteria, include_aliases=include_aliases, propagate_to_loaders=propagate_to_loaders, ) def __reduce__(self): return ( LoaderCriteriaOption._unreduce, ( self.entity.class_ if self.entity else self.root_entity, self._where_crit_orig, self.include_aliases, self.propagate_to_loaders, ), ) def _all_mappers(self) -> Iterator[Mapper[Any]]: if self.entity: yield from self.entity.mapper.self_and_descendants else: assert self.root_entity stack = list(self.root_entity.__subclasses__()) while stack: subclass = stack.pop(0) ent = cast( "_InternalEntityType[Any]", inspection.inspect(subclass, raiseerr=False), ) if ent: yield from ent.mapper.self_and_descendants else: stack.extend(subclass.__subclasses__()) def _should_include(self, compile_state: ORMCompileState) -> bool: if ( compile_state.select_statement._annotations.get( "for_loader_criteria", None ) is self ): return False return True def _resolve_where_criteria( self, ext_info: _InternalEntityType[Any] ) -> ColumnElement[bool]: if self.deferred_where_criteria: crit = cast( "ColumnElement[bool]", self.where_criteria._resolve_with_args(ext_info.entity), ) else: crit = self.where_criteria # type: ignore assert isinstance(crit, ColumnElement) return sql_util._deep_annotate( crit, {"for_loader_criteria": self}, detect_subquery_cols=True, ind_cols_on_fromclause=True, ) def process_compile_state_replaced_entities( self, compile_state: ORMCompileState, mapper_entities: Iterable[_MapperEntity], ) -> None: self.process_compile_state(compile_state) def process_compile_state(self, compile_state: ORMCompileState) -> None: """Apply a modification to a given :class:`.CompileState`.""" # if options to limit the criteria to immediate query only, # use compile_state.attributes instead self.get_global_criteria(compile_state.global_attributes) def get_global_criteria(self, attributes: Dict[Any, Any]) -> None: for mp in self._all_mappers(): load_criteria = attributes.setdefault( ("additional_entity_criteria", mp), [] ) load_criteria.append(self) inspection._inspects(AliasedClass)(lambda target: target._aliased_insp) @inspection._inspects(type) def _inspect_mc( class_: Type[_O], ) -> Optional[Mapper[_O]]: try: class_manager = opt_manager_of_class(class_) if class_manager is None or not class_manager.is_mapped: return None mapper = class_manager.mapper except exc.NO_STATE: return None else: return mapper GenericAlias = type(List[Any]) @inspection._inspects(GenericAlias) def _inspect_generic_alias( class_: Type[_O], ) -> Optional[Mapper[_O]]: origin = cast("Type[_O]", typing_get_origin(class_)) return _inspect_mc(origin) @inspection._self_inspects class Bundle( ORMColumnsClauseRole[_T], SupportsCloneAnnotations, MemoizedHasCacheKey, inspection.Inspectable["Bundle[_T]"], InspectionAttr, ): """A grouping of SQL expressions that are returned by a :class:`.Query` under one namespace. The :class:`.Bundle` essentially allows nesting of the tuple-based results returned by a column-oriented :class:`_query.Query` object. It also is extensible via simple subclassing, where the primary capability to override is that of how the set of expressions should be returned, allowing post-processing as well as custom return types, without involving ORM identity-mapped classes. .. seealso:: :ref:`bundles` """ single_entity = False """If True, queries for a single Bundle will be returned as a single entity, rather than an element within a keyed tuple.""" is_clause_element = False is_mapper = False is_aliased_class = False is_bundle = True _propagate_attrs: _PropagateAttrsType = util.immutabledict() proxy_set = util.EMPTY_SET # type: ignore exprs: List[_ColumnsClauseElement] def __init__( self, name: str, *exprs: _ColumnExpressionArgument[Any], **kw: Any ): r"""Construct a new :class:`.Bundle`. e.g.:: bn = Bundle("mybundle", MyClass.x, MyClass.y) for row in session.query(bn).filter( bn.c.x == 5).filter(bn.c.y == 4): print(row.mybundle.x, row.mybundle.y) :param name: name of the bundle. :param \*exprs: columns or SQL expressions comprising the bundle. :param single_entity=False: if True, rows for this :class:`.Bundle` can be returned as a "single entity" outside of any enclosing tuple in the same manner as a mapped entity. """ self.name = self._label = name coerced_exprs = [ coercions.expect( roles.ColumnsClauseRole, expr, apply_propagate_attrs=self ) for expr in exprs ] self.exprs = coerced_exprs self.c = self.columns = ColumnCollection( (getattr(col, "key", col._label), col) for col in [e._annotations.get("bundle", e) for e in coerced_exprs] ).as_readonly() self.single_entity = kw.pop("single_entity", self.single_entity) def _gen_cache_key( self, anon_map: anon_map, bindparams: List[BindParameter[Any]] ) -> Tuple[Any, ...]: return (self.__class__, self.name, self.single_entity) + tuple( [expr._gen_cache_key(anon_map, bindparams) for expr in self.exprs] ) @property def mapper(self) -> Optional[Mapper[Any]]: mp: Optional[Mapper[Any]] = self.exprs[0]._annotations.get( "parentmapper", None ) return mp @property def entity(self) -> Optional[_InternalEntityType[Any]]: ie: Optional[_InternalEntityType[Any]] = self.exprs[ 0 ]._annotations.get("parententity", None) return ie @property def entity_namespace( self, ) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]: return self.c columns: ReadOnlyColumnCollection[str, KeyedColumnElement[Any]] """A namespace of SQL expressions referred to by this :class:`.Bundle`. e.g.:: bn = Bundle("mybundle", MyClass.x, MyClass.y) q = sess.query(bn).filter(bn.c.x == 5) Nesting of bundles is also supported:: b1 = Bundle("b1", Bundle('b2', MyClass.a, MyClass.b), Bundle('b3', MyClass.x, MyClass.y) ) q = sess.query(b1).filter( b1.c.b2.c.a == 5).filter(b1.c.b3.c.y == 9) .. seealso:: :attr:`.Bundle.c` """ c: ReadOnlyColumnCollection[str, KeyedColumnElement[Any]] """An alias for :attr:`.Bundle.columns`.""" def _clone(self, **kw): cloned = self.__class__.__new__(self.__class__) cloned.__dict__.update(self.__dict__) return cloned def __clause_element__(self): # ensure existing entity_namespace remains annotations = {"bundle": self, "entity_namespace": self} annotations.update(self._annotations) plugin_subject = self.exprs[0]._propagate_attrs.get( "plugin_subject", self.entity ) return ( expression.ClauseList( _literal_as_text_role=roles.ColumnsClauseRole, group=False, *[e._annotations.get("bundle", e) for e in self.exprs], ) ._annotate(annotations) ._set_propagate_attrs( # the Bundle *must* use the orm plugin no matter what. the # subject can be None but it's much better if it's not. { "compile_state_plugin": "orm", "plugin_subject": plugin_subject, } ) ) @property def clauses(self): return self.__clause_element__().clauses def label(self, name): """Provide a copy of this :class:`.Bundle` passing a new label.""" cloned = self._clone() cloned.name = name return cloned def create_row_processor( self, query: Select[Any], procs: Sequence[Callable[[Row[Any]], Any]], labels: Sequence[str], ) -> Callable[[Row[Any]], Any]: """Produce the "row processing" function for this :class:`.Bundle`. May be overridden by subclasses to provide custom behaviors when results are fetched. The method is passed the statement object and a set of "row processor" functions at query execution time; these processor functions when given a result row will return the individual attribute value, which can then be adapted into any kind of return data structure. The example below illustrates replacing the usual :class:`.Row` return structure with a straight Python dictionary:: from sqlalchemy.orm import Bundle class DictBundle(Bundle): def create_row_processor(self, query, procs, labels): 'Override create_row_processor to return values as dictionaries' def proc(row): return dict( zip(labels, (proc(row) for proc in procs)) ) return proc A result from the above :class:`_orm.Bundle` will return dictionary values:: bn = DictBundle('mybundle', MyClass.data1, MyClass.data2) for row in session.execute(select(bn)).where(bn.c.data1 == 'd1'): print(row.mybundle['data1'], row.mybundle['data2']) """ keyed_tuple = result_tuple(labels, [() for l in labels]) def proc(row: Row[Any]) -> Any: return keyed_tuple([proc(row) for proc in procs]) return proc def _orm_annotate(element: _SA, exclude: Optional[Any] = None) -> _SA: """Deep copy the given ClauseElement, annotating each element with the "_orm_adapt" flag. Elements within the exclude collection will be cloned but not annotated. """ return sql_util._deep_annotate(element, {"_orm_adapt": True}, exclude) def _orm_deannotate(element: _SA) -> _SA: """Remove annotations that link a column to a particular mapping. Note this doesn't affect "remote" and "foreign" annotations passed by the :func:`_orm.foreign` and :func:`_orm.remote` annotators. """ return sql_util._deep_deannotate( element, values=("_orm_adapt", "parententity") ) def _orm_full_deannotate(element: _SA) -> _SA: return sql_util._deep_deannotate(element) class _ORMJoin(expression.Join): """Extend Join to support ORM constructs as input.""" __visit_name__ = expression.Join.__visit_name__ inherit_cache = True def __init__( self, left: _FromClauseArgument, right: _FromClauseArgument, onclause: Optional[_OnClauseArgument] = None, isouter: bool = False, full: bool = False, _left_memo: Optional[Any] = None, _right_memo: Optional[Any] = None, _extra_criteria: Tuple[ColumnElement[bool], ...] = (), ): left_info = cast( "Union[FromClause, _InternalEntityType[Any]]", inspection.inspect(left), ) right_info = cast( "Union[FromClause, _InternalEntityType[Any]]", inspection.inspect(right), ) adapt_to = right_info.selectable # used by joined eager loader self._left_memo = _left_memo self._right_memo = _right_memo if isinstance(onclause, attributes.QueryableAttribute): if TYPE_CHECKING: assert isinstance( onclause.comparator, RelationshipProperty.Comparator ) on_selectable = onclause.comparator._source_selectable() prop = onclause.property _extra_criteria += onclause._extra_criteria elif isinstance(onclause, MapperProperty): # used internally by joined eager loader...possibly not ideal prop = onclause on_selectable = prop.parent.selectable else: prop = None on_selectable = None left_selectable = left_info.selectable if prop: adapt_from: Optional[FromClause] if sql_util.clause_is_present(on_selectable, left_selectable): adapt_from = on_selectable else: assert isinstance(left_selectable, FromClause) adapt_from = left_selectable ( pj, sj, source, dest, secondary, target_adapter, ) = prop._create_joins( source_selectable=adapt_from, dest_selectable=adapt_to, source_polymorphic=True, of_type_entity=right_info, alias_secondary=True, extra_criteria=_extra_criteria, ) if sj is not None: if isouter: # note this is an inner join from secondary->right right = sql.join(secondary, right, sj) onclause = pj else: left = sql.join(left, secondary, pj, isouter) onclause = sj else: onclause = pj self._target_adapter = target_adapter # we don't use the normal coercions logic for _ORMJoin # (probably should), so do some gymnastics to get the entity. # logic here is for #8721, which was a major bug in 1.4 # for almost two years, not reported/fixed until 1.4.43 (!) if is_selectable(left_info): parententity = left_selectable._annotations.get( "parententity", None ) elif insp_is_mapper(left_info) or insp_is_aliased_class(left_info): parententity = left_info else: parententity = None if parententity is not None: self._annotations = self._annotations.union( {"parententity": parententity} ) augment_onclause = bool(_extra_criteria) and not prop expression.Join.__init__(self, left, right, onclause, isouter, full) assert self.onclause is not None if augment_onclause: self.onclause &= sql.and_(*_extra_criteria) if ( not prop and getattr(right_info, "mapper", None) and right_info.mapper.single # type: ignore ): right_info = cast("_InternalEntityType[Any]", right_info) # if single inheritance target and we are using a manual # or implicit ON clause, augment it the same way we'd augment the # WHERE. single_crit = right_info.mapper._single_table_criterion if single_crit is not None: if insp_is_aliased_class(right_info): single_crit = right_info._adapter.traverse(single_crit) self.onclause = self.onclause & single_crit def _splice_into_center(self, other): """Splice a join into the center. Given join(a, b) and join(b, c), return join(a, b).join(c) """ leftmost = other while isinstance(leftmost, sql.Join): leftmost = leftmost.left assert self.right is leftmost left = _ORMJoin( self.left, other.left, self.onclause, isouter=self.isouter, _left_memo=self._left_memo, _right_memo=None, ) return _ORMJoin( left, other.right, other.onclause, isouter=other.isouter, _right_memo=other._right_memo, ) def join( self, right: _FromClauseArgument, onclause: Optional[_OnClauseArgument] = None, isouter: bool = False, full: bool = False, ) -> _ORMJoin: return _ORMJoin(self, right, onclause, full=full, isouter=isouter) def outerjoin( self, right: _FromClauseArgument, onclause: Optional[_OnClauseArgument] = None, full: bool = False, ) -> _ORMJoin: return _ORMJoin(self, right, onclause, isouter=True, full=full) def with_parent( instance: object, prop: attributes.QueryableAttribute[Any], from_entity: Optional[_EntityType[Any]] = None, ) -> ColumnElement[bool]: """Create filtering criterion that relates this query's primary entity to the given related instance, using established :func:`_orm.relationship()` configuration. E.g.:: stmt = select(Address).where(with_parent(some_user, User.addresses)) The SQL rendered is the same as that rendered when a lazy loader would fire off from the given parent on that attribute, meaning that the appropriate state is taken from the parent object in Python without the need to render joins to the parent table in the rendered statement. The given property may also make use of :meth:`_orm.PropComparator.of_type` to indicate the left side of the criteria:: a1 = aliased(Address) a2 = aliased(Address) stmt = select(a1, a2).where( with_parent(u1, User.addresses.of_type(a2)) ) The above use is equivalent to using the :func:`_orm.with_parent.from_entity` argument:: a1 = aliased(Address) a2 = aliased(Address) stmt = select(a1, a2).where( with_parent(u1, User.addresses, from_entity=a2) ) :param instance: An instance which has some :func:`_orm.relationship`. :param property: Class-bound attribute, which indicates what relationship from the instance should be used to reconcile the parent/child relationship. :param from_entity: Entity in which to consider as the left side. This defaults to the "zero" entity of the :class:`_query.Query` itself. .. versionadded:: 1.2 """ prop_t: RelationshipProperty[Any] if isinstance(prop, str): raise sa_exc.ArgumentError( "with_parent() accepts class-bound mapped attributes, not strings" ) elif isinstance(prop, attributes.QueryableAttribute): if prop._of_type: from_entity = prop._of_type mapper_property = prop.property if mapper_property is None or not prop_is_relationship( mapper_property ): raise sa_exc.ArgumentError( f"Expected relationship property for with_parent(), " f"got {mapper_property}" ) prop_t = mapper_property else: prop_t = prop return prop_t._with_parent(instance, from_entity=from_entity) def has_identity(object_: object) -> bool: """Return True if the given object has a database identity. This typically corresponds to the object being in either the persistent or detached state. .. seealso:: :func:`.was_deleted` """ state = attributes.instance_state(object_) return state.has_identity def was_deleted(object_: object) -> bool: """Return True if the given object was deleted within a session flush. This is regardless of whether or not the object is persistent or detached. .. seealso:: :attr:`.InstanceState.was_deleted` """ state = attributes.instance_state(object_) return state.was_deleted def _entity_corresponds_to( given: _InternalEntityType[Any], entity: _InternalEntityType[Any] ) -> bool: """determine if 'given' corresponds to 'entity', in terms of an entity passed to Query that would match the same entity being referred to elsewhere in the query. """ if insp_is_aliased_class(entity): if insp_is_aliased_class(given): if entity._base_alias() is given._base_alias(): return True return False elif insp_is_aliased_class(given): if given._use_mapper_path: return entity in given.with_polymorphic_mappers else: return entity is given assert insp_is_mapper(given) return entity.common_parent(given) def _entity_corresponds_to_use_path_impl( given: _InternalEntityType[Any], entity: _InternalEntityType[Any] ) -> bool: """determine if 'given' corresponds to 'entity', in terms of a path of loader options where a mapped attribute is taken to be a member of a parent entity. e.g.:: someoption(A).someoption(A.b) # -> fn(A, A) -> True someoption(A).someoption(C.d) # -> fn(A, C) -> False a1 = aliased(A) someoption(a1).someoption(A.b) # -> fn(a1, A) -> False someoption(a1).someoption(a1.b) # -> fn(a1, a1) -> True wp = with_polymorphic(A, [A1, A2]) someoption(wp).someoption(A1.foo) # -> fn(wp, A1) -> False someoption(wp).someoption(wp.A1.foo) # -> fn(wp, wp.A1) -> True """ if insp_is_aliased_class(given): return ( insp_is_aliased_class(entity) and not entity._use_mapper_path and (given is entity or entity in given._with_polymorphic_entities) ) elif not insp_is_aliased_class(entity): return given.isa(entity.mapper) else: return ( entity._use_mapper_path and given in entity.with_polymorphic_mappers ) def _entity_isa(given: _InternalEntityType[Any], mapper: Mapper[Any]) -> bool: """determine if 'given' "is a" mapper, in terms of the given would load rows of type 'mapper'. """ if given.is_aliased_class: return mapper in given.with_polymorphic_mappers or given.mapper.isa( mapper ) elif given.with_polymorphic_mappers: return mapper in given.with_polymorphic_mappers or given.isa(mapper) else: return given.isa(mapper) def _getitem(iterable_query: Query[Any], item: Any) -> Any: """calculate __getitem__ in terms of an iterable query object that also has a slice() method. """ def _no_negative_indexes(): raise IndexError( "negative indexes are not accepted by SQL " "index / slice operators" ) if isinstance(item, slice): start, stop, step = util.decode_slice(item) if ( isinstance(stop, int) and isinstance(start, int) and stop - start <= 0 ): return [] elif (isinstance(start, int) and start < 0) or ( isinstance(stop, int) and stop < 0 ): _no_negative_indexes() res = iterable_query.slice(start, stop) if step is not None: return list(res)[None : None : item.step] else: return list(res) else: if item == -1: _no_negative_indexes() else: return list(iterable_query[item : item + 1])[0] def _is_mapped_annotation( raw_annotation: _AnnotationScanType, cls: Type[Any], originating_cls: Type[Any], ) -> bool: try: annotated = de_stringify_annotation( cls, raw_annotation, originating_cls.__module__ ) except NameError: # in most cases, at least within our own tests, we can raise # here, which is more accurate as it prevents us from returning # false negatives. However, in the real world, try to avoid getting # involved with end-user annotations that have nothing to do with us. # see issue #8888 where we bypass using this function in the case # that we want to detect an unresolvable Mapped[] type. return False else: return is_origin_of_cls(annotated, _MappedAnnotationBase) class _CleanupError(Exception): pass def _cleanup_mapped_str_annotation( annotation: str, originating_module: str ) -> str: # fix up an annotation that comes in as the form: # 'Mapped[List[Address]]' so that it instead looks like: # 'Mapped[List["Address"]]' , which will allow us to get # "Address" as a string # additionally, resolve symbols for these names since this is where # we'd have to do it inner: Optional[Match[str]] mm = re.match(r"^(.+?)\[(.+)\]$", annotation) if not mm: return annotation # ticket #8759. Resolve the Mapped name to a real symbol. # originally this just checked the name. try: obj = eval_name_only(mm.group(1), originating_module) except NameError as ne: raise _CleanupError( f'For annotation "{annotation}", could not resolve ' f'container type "{mm.group(1)}". ' "Please ensure this type is imported at the module level " "outside of TYPE_CHECKING blocks" ) from ne if obj is typing.ClassVar: real_symbol = "ClassVar" else: try: if issubclass(obj, _MappedAnnotationBase): real_symbol = obj.__name__ else: return annotation except TypeError: # avoid isinstance(obj, type) check, just catch TypeError return annotation # note: if one of the codepaths above didn't define real_symbol and # then didn't return, real_symbol raises UnboundLocalError # which is actually a NameError, and the calling routines don't # notice this since they are catching NameError anyway. Just in case # this is being modified in the future, something to be aware of. stack = [] inner = mm while True: stack.append(real_symbol if mm is inner else inner.group(1)) g2 = inner.group(2) inner = re.match(r"^(.+?)\[(.+)\]$", g2) if inner is None: stack.append(g2) break # stacks we want to rewrite, that is, quote the last entry which # we think is a relationship class name: # # ['Mapped', 'List', 'Address'] # ['Mapped', 'A'] # # stacks we dont want to rewrite, which are generally MappedColumn # use cases: # # ['Mapped', "'Optional[Dict[str, str]]'"] # ['Mapped', 'dict[str, str] | None'] if ( # avoid already quoted symbols such as # ['Mapped', "'Optional[Dict[str, str]]'"] not re.match(r"""^["'].*["']$""", stack[-1]) # avoid further generics like Dict[] such as # ['Mapped', 'dict[str, str] | None'] and not re.match(r".*\[.*\]", stack[-1]) ): stripchars = "\"' " stack[-1] = ", ".join( f'"{elem.strip(stripchars)}"' for elem in stack[-1].split(",") ) annotation = "[".join(stack) + ("]" * (len(stack) - 1)) return annotation def _extract_mapped_subtype( raw_annotation: Optional[_AnnotationScanType], cls: type, originating_module: str, key: str, attr_cls: Type[Any], required: bool, is_dataclass_field: bool, expect_mapped: bool = True, raiseerr: bool = True, ) -> Optional[Tuple[Union[type, str], Optional[type]]]: """given an annotation, figure out if it's ``Mapped[something]`` and if so, return the ``something`` part. Includes error raise scenarios and other options. """ if raw_annotation is None: if required: raise sa_exc.ArgumentError( f"Python typing annotation is required for attribute " f'"{cls.__name__}.{key}" when primary argument(s) for ' f'"{attr_cls.__name__}" construct are None or not present' ) return None try: annotated = de_stringify_annotation( cls, raw_annotation, originating_module, str_cleanup_fn=_cleanup_mapped_str_annotation, ) except _CleanupError as ce: raise sa_exc.ArgumentError( f"Could not interpret annotation {raw_annotation}. " "Check that it uses names that are correctly imported at the " "module level. See chained stack trace for more hints." ) from ce except NameError as ne: if raiseerr and "Mapped[" in raw_annotation: # type: ignore raise sa_exc.ArgumentError( f"Could not interpret annotation {raw_annotation}. " "Check that it uses names that are correctly imported at the " "module level. See chained stack trace for more hints." ) from ne annotated = raw_annotation # type: ignore if is_dataclass_field: return annotated, None else: if not hasattr(annotated, "__origin__") or not is_origin_of_cls( annotated, _MappedAnnotationBase ): if expect_mapped: if not raiseerr: return None origin = getattr(annotated, "__origin__", None) if origin is typing.ClassVar: return None # check for other kind of ORM descriptor like AssociationProxy, # don't raise for that (issue #9957) elif isinstance(origin, type) and issubclass( origin, ORMDescriptor ): return None raise sa_exc.ArgumentError( f'Type annotation for "{cls.__name__}.{key}" ' "can't be correctly interpreted for " "Annotated Declarative Table form. ORM annotations " "should normally make use of the ``Mapped[]`` generic " "type, or other ORM-compatible generic type, as a " "container for the actual type, which indicates the " "intent that the attribute is mapped. " "Class variables that are not intended to be mapped " "by the ORM should use ClassVar[]. " "To allow Annotated Declarative to disregard legacy " "annotations which don't use Mapped[] to pass, set " '"__allow_unmapped__ = True" on the class or a ' "superclass this class.", code="zlpr", ) else: return annotated, None if len(annotated.__args__) != 1: raise sa_exc.ArgumentError( "Expected sub-type for Mapped[] annotation" ) return annotated.__args__[0], annotated.__origin__ def _mapper_property_as_plain_name(prop: Type[Any]) -> str: if hasattr(prop, "_mapper_property_name"): name = prop._mapper_property_name() else: name = None return util.clsname_as_plain_name(prop, name)