Server IP : 66.29.132.122 / Your IP : 18.221.66.64 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/pydantic/_internal/ |
Upload File : |
"""Private logic related to fields (the `Field()` function and `FieldInfo` class), and arguments to `Annotated`.""" from __future__ import annotations as _annotations import dataclasses import sys import warnings from copy import copy from typing import TYPE_CHECKING, Any from annotated_types import BaseMetadata from pydantic_core import PydanticUndefined from . import _typing_extra from ._config import ConfigWrapper from ._repr import Representation from ._typing_extra import get_cls_type_hints_lenient, get_type_hints, is_classvar, is_finalvar if TYPE_CHECKING: from ..fields import FieldInfo from ..main import BaseModel from ._dataclasses import StandardDataclass from ._decorators import DecoratorInfos def get_type_hints_infer_globalns( obj: Any, localns: dict[str, Any] | None = None, include_extras: bool = False, ) -> dict[str, Any]: """Gets type hints for an object by inferring the global namespace. It uses the `typing.get_type_hints`, The only thing that we do here is fetching global namespace from `obj.__module__` if it is not `None`. Args: obj: The object to get its type hints. localns: The local namespaces. include_extras: Whether to recursively include annotation metadata. Returns: The object type hints. """ module_name = getattr(obj, '__module__', None) globalns: dict[str, Any] | None = None if module_name: try: globalns = sys.modules[module_name].__dict__ except KeyError: # happens occasionally, see https://github.com/pydantic/pydantic/issues/2363 pass return get_type_hints(obj, globalns=globalns, localns=localns, include_extras=include_extras) class PydanticMetadata(Representation): """Base class for annotation markers like `Strict`.""" __slots__ = () class PydanticGeneralMetadata(PydanticMetadata, BaseMetadata): """Pydantic general metada like `max_digits`.""" def __init__(self, **metadata: Any): self.__dict__ = metadata def collect_model_fields( # noqa: C901 cls: type[BaseModel], bases: tuple[type[Any], ...], config_wrapper: ConfigWrapper, types_namespace: dict[str, Any] | None, *, typevars_map: dict[Any, Any] | None = None, ) -> tuple[dict[str, FieldInfo], set[str]]: """Collect the fields of a nascent pydantic model. Also collect the names of any ClassVars present in the type hints. The returned value is a tuple of two items: the fields dict, and the set of ClassVar names. Args: cls: BaseModel or dataclass. bases: Parents of the class, generally `cls.__bases__`. config_wrapper: The config wrapper instance. types_namespace: Optional extra namespace to look for types in. typevars_map: A dictionary mapping type variables to their concrete types. Returns: A tuple contains fields and class variables. Raises: NameError: - If there is a conflict between a field name and protected namespaces. - If there is a field other than `root` in `RootModel`. - If a field shadows an attribute in the parent model. """ from ..fields import FieldInfo type_hints = get_cls_type_hints_lenient(cls, types_namespace) # https://docs.python.org/3/howto/annotations.html#accessing-the-annotations-dict-of-an-object-in-python-3-9-and-older # annotations is only used for finding fields in parent classes annotations = cls.__dict__.get('__annotations__', {}) fields: dict[str, FieldInfo] = {} class_vars: set[str] = set() for ann_name, ann_type in type_hints.items(): if ann_name == 'model_config': # We never want to treat `model_config` as a field # Note: we may need to change this logic if/when we introduce a `BareModel` class with no # protected namespaces (where `model_config` might be allowed as a field name) continue for protected_namespace in config_wrapper.protected_namespaces: if ann_name.startswith(protected_namespace): for b in bases: if hasattr(b, ann_name): from ..main import BaseModel if not (issubclass(b, BaseModel) and ann_name in b.model_fields): raise NameError( f'Field "{ann_name}" conflicts with member {getattr(b, ann_name)}' f' of protected namespace "{protected_namespace}".' ) else: valid_namespaces = tuple( x for x in config_wrapper.protected_namespaces if not ann_name.startswith(x) ) warnings.warn( f'Field "{ann_name}" has conflict with protected namespace "{protected_namespace}".' '\n\nYou may be able to resolve this warning by setting' f" `model_config['protected_namespaces'] = {valid_namespaces}`.", UserWarning, ) if is_classvar(ann_type): class_vars.add(ann_name) continue if _is_finalvar_with_default_val(ann_type, getattr(cls, ann_name, PydanticUndefined)): class_vars.add(ann_name) continue if not is_valid_field_name(ann_name): continue if cls.__pydantic_root_model__ and ann_name != 'root': raise NameError( f"Unexpected field with name {ann_name!r}; only 'root' is allowed as a field of a `RootModel`" ) # when building a generic model with `MyModel[int]`, the generic_origin check makes sure we don't get # "... shadows an attribute" errors generic_origin = getattr(cls, '__pydantic_generic_metadata__', {}).get('origin') for base in bases: dataclass_fields = { field.name for field in (dataclasses.fields(base) if dataclasses.is_dataclass(base) else ()) } if hasattr(base, ann_name): if base is generic_origin: # Don't error when "shadowing" of attributes in parametrized generics continue if ann_name in dataclass_fields: # Don't error when inheriting stdlib dataclasses whose fields are "shadowed" by defaults being set # on the class instance. continue warnings.warn( f'Field name "{ann_name}" shadows an attribute in parent "{base.__qualname__}"; ', UserWarning, ) try: default = getattr(cls, ann_name, PydanticUndefined) if default is PydanticUndefined: raise AttributeError except AttributeError: if ann_name in annotations: field_info = FieldInfo.from_annotation(ann_type) else: # if field has no default value and is not in __annotations__ this means that it is # defined in a base class and we can take it from there model_fields_lookup: dict[str, FieldInfo] = {} for x in cls.__bases__[::-1]: model_fields_lookup.update(getattr(x, 'model_fields', {})) if ann_name in model_fields_lookup: # The field was present on one of the (possibly multiple) base classes # copy the field to make sure typevar substitutions don't cause issues with the base classes field_info = copy(model_fields_lookup[ann_name]) else: # The field was not found on any base classes; this seems to be caused by fields not getting # generated thanks to models not being fully defined while initializing recursive models. # Nothing stops us from just creating a new FieldInfo for this type hint, so we do this. field_info = FieldInfo.from_annotation(ann_type) else: field_info = FieldInfo.from_annotated_attribute(ann_type, default) # attributes which are fields are removed from the class namespace: # 1. To match the behaviour of annotation-only fields # 2. To avoid false positives in the NameError check above try: delattr(cls, ann_name) except AttributeError: pass # indicates the attribute was on a parent class # Use cls.__dict__['__pydantic_decorators__'] instead of cls.__pydantic_decorators__ # to make sure the decorators have already been built for this exact class decorators: DecoratorInfos = cls.__dict__['__pydantic_decorators__'] if ann_name in decorators.computed_fields: raise ValueError("you can't override a field with a computed field") fields[ann_name] = field_info if typevars_map: for field in fields.values(): field.apply_typevars_map(typevars_map, types_namespace) return fields, class_vars def _is_finalvar_with_default_val(type_: type[Any], val: Any) -> bool: from ..fields import FieldInfo if not is_finalvar(type_): return False elif val is PydanticUndefined: return False elif isinstance(val, FieldInfo) and (val.default is PydanticUndefined and val.default_factory is None): return False else: return True def collect_dataclass_fields( cls: type[StandardDataclass], types_namespace: dict[str, Any] | None, *, typevars_map: dict[Any, Any] | None = None ) -> dict[str, FieldInfo]: """Collect the fields of a dataclass. Args: cls: dataclass. types_namespace: Optional extra namespace to look for types in. typevars_map: A dictionary mapping type variables to their concrete types. Returns: The dataclass fields. """ from ..fields import FieldInfo fields: dict[str, FieldInfo] = {} dataclass_fields: dict[str, dataclasses.Field] = cls.__dataclass_fields__ cls_localns = dict(vars(cls)) # this matches get_cls_type_hints_lenient, but all tests pass with `= None` instead for ann_name, dataclass_field in dataclass_fields.items(): ann_type = _typing_extra.eval_type_lenient(dataclass_field.type, types_namespace, cls_localns) if is_classvar(ann_type): continue if not dataclass_field.init and dataclass_field.default_factory == dataclasses.MISSING: # TODO: We should probably do something with this so that validate_assignment behaves properly # Issue: https://github.com/pydantic/pydantic/issues/5470 continue if isinstance(dataclass_field.default, FieldInfo): if dataclass_field.default.init_var: # TODO: same note as above continue field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field.default) else: field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field) fields[ann_name] = field_info if field_info.default is not PydanticUndefined and isinstance(getattr(cls, ann_name, field_info), FieldInfo): # We need this to fix the default when the "default" from __dataclass_fields__ is a pydantic.FieldInfo setattr(cls, ann_name, field_info.default) if typevars_map: for field in fields.values(): field.apply_typevars_map(typevars_map, types_namespace) return fields def is_valid_field_name(name: str) -> bool: return not name.startswith('_') def is_valid_privateattr_name(name: str) -> bool: return name.startswith('_') and not name.startswith('__')