Server IP : 66.29.132.122 / Your IP : 3.142.166.186 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/ |
Upload File : |
from collections.abc import Generator from typing import ( Any, TypeVar, Union, overload, ) from numpy import ndarray, dtype, generic from numpy._typing import DTypeLike # TODO: Set a shape bound once we've got proper shape support _Shape = TypeVar("_Shape", bound=Any) _DType = TypeVar("_DType", bound=dtype[Any]) _ScalarType = TypeVar("_ScalarType", bound=generic) _Index = Union[ Union[ellipsis, int, slice], tuple[Union[ellipsis, int, slice], ...], ] __all__: list[str] # NOTE: In reality `Arrayterator` does not actually inherit from `ndarray`, # but its ``__getattr__` method does wrap around the former and thus has # access to all its methods class Arrayterator(ndarray[_Shape, _DType]): var: ndarray[_Shape, _DType] # type: ignore[assignment] buf_size: None | int start: list[int] stop: list[int] step: list[int] @property # type: ignore[misc] def shape(self) -> tuple[int, ...]: ... @property def flat( # type: ignore[override] self: ndarray[Any, dtype[_ScalarType]] ) -> Generator[_ScalarType, None, None]: ... def __init__( self, var: ndarray[_Shape, _DType], buf_size: None | int = ... ) -> None: ... @overload def __array__(self, dtype: None = ...) -> ndarray[Any, _DType]: ... @overload def __array__(self, dtype: DTypeLike) -> ndarray[Any, dtype[Any]]: ... def __getitem__(self, index: _Index) -> Arrayterator[Any, _DType]: ... def __iter__(self) -> Generator[ndarray[Any, _DType], None, None]: ...