Server IP : 66.29.132.122 / Your IP : 3.15.192.196 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/cryptography/hazmat/primitives/asymmetric/ |
Upload File : |
# This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this repository # for complete details. from __future__ import annotations import abc import typing from math import gcd from cryptography.hazmat.primitives import _serialization, hashes from cryptography.hazmat.primitives._asymmetric import AsymmetricPadding from cryptography.hazmat.primitives.asymmetric import utils as asym_utils class RSAPrivateKey(metaclass=abc.ABCMeta): @abc.abstractmethod def decrypt(self, ciphertext: bytes, padding: AsymmetricPadding) -> bytes: """ Decrypts the provided ciphertext. """ @property @abc.abstractmethod def key_size(self) -> int: """ The bit length of the public modulus. """ @abc.abstractmethod def public_key(self) -> RSAPublicKey: """ The RSAPublicKey associated with this private key. """ @abc.abstractmethod def sign( self, data: bytes, padding: AsymmetricPadding, algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm], ) -> bytes: """ Signs the data. """ @abc.abstractmethod def private_numbers(self) -> RSAPrivateNumbers: """ Returns an RSAPrivateNumbers. """ @abc.abstractmethod def private_bytes( self, encoding: _serialization.Encoding, format: _serialization.PrivateFormat, encryption_algorithm: _serialization.KeySerializationEncryption, ) -> bytes: """ Returns the key serialized as bytes. """ RSAPrivateKeyWithSerialization = RSAPrivateKey class RSAPublicKey(metaclass=abc.ABCMeta): @abc.abstractmethod def encrypt(self, plaintext: bytes, padding: AsymmetricPadding) -> bytes: """ Encrypts the given plaintext. """ @property @abc.abstractmethod def key_size(self) -> int: """ The bit length of the public modulus. """ @abc.abstractmethod def public_numbers(self) -> RSAPublicNumbers: """ Returns an RSAPublicNumbers """ @abc.abstractmethod def public_bytes( self, encoding: _serialization.Encoding, format: _serialization.PublicFormat, ) -> bytes: """ Returns the key serialized as bytes. """ @abc.abstractmethod def verify( self, signature: bytes, data: bytes, padding: AsymmetricPadding, algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm], ) -> None: """ Verifies the signature of the data. """ @abc.abstractmethod def recover_data_from_signature( self, signature: bytes, padding: AsymmetricPadding, algorithm: typing.Optional[hashes.HashAlgorithm], ) -> bytes: """ Recovers the original data from the signature. """ @abc.abstractmethod def __eq__(self, other: object) -> bool: """ Checks equality. """ RSAPublicKeyWithSerialization = RSAPublicKey def generate_private_key( public_exponent: int, key_size: int, backend: typing.Any = None, ) -> RSAPrivateKey: from cryptography.hazmat.backends.openssl.backend import backend as ossl _verify_rsa_parameters(public_exponent, key_size) return ossl.generate_rsa_private_key(public_exponent, key_size) def _verify_rsa_parameters(public_exponent: int, key_size: int) -> None: if public_exponent not in (3, 65537): raise ValueError( "public_exponent must be either 3 (for legacy compatibility) or " "65537. Almost everyone should choose 65537 here!" ) if key_size < 512: raise ValueError("key_size must be at least 512-bits.") def _check_private_key_components( p: int, q: int, private_exponent: int, dmp1: int, dmq1: int, iqmp: int, public_exponent: int, modulus: int, ) -> None: if modulus < 3: raise ValueError("modulus must be >= 3.") if p >= modulus: raise ValueError("p must be < modulus.") if q >= modulus: raise ValueError("q must be < modulus.") if dmp1 >= modulus: raise ValueError("dmp1 must be < modulus.") if dmq1 >= modulus: raise ValueError("dmq1 must be < modulus.") if iqmp >= modulus: raise ValueError("iqmp must be < modulus.") if private_exponent >= modulus: raise ValueError("private_exponent must be < modulus.") if public_exponent < 3 or public_exponent >= modulus: raise ValueError("public_exponent must be >= 3 and < modulus.") if public_exponent & 1 == 0: raise ValueError("public_exponent must be odd.") if dmp1 & 1 == 0: raise ValueError("dmp1 must be odd.") if dmq1 & 1 == 0: raise ValueError("dmq1 must be odd.") if p * q != modulus: raise ValueError("p*q must equal modulus.") def _check_public_key_components(e: int, n: int) -> None: if n < 3: raise ValueError("n must be >= 3.") if e < 3 or e >= n: raise ValueError("e must be >= 3 and < n.") if e & 1 == 0: raise ValueError("e must be odd.") def _modinv(e: int, m: int) -> int: """ Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1 """ x1, x2 = 1, 0 a, b = e, m while b > 0: q, r = divmod(a, b) xn = x1 - q * x2 a, b, x1, x2 = b, r, x2, xn return x1 % m def rsa_crt_iqmp(p: int, q: int) -> int: """ Compute the CRT (q ** -1) % p value from RSA primes p and q. """ return _modinv(q, p) def rsa_crt_dmp1(private_exponent: int, p: int) -> int: """ Compute the CRT private_exponent % (p - 1) value from the RSA private_exponent (d) and p. """ return private_exponent % (p - 1) def rsa_crt_dmq1(private_exponent: int, q: int) -> int: """ Compute the CRT private_exponent % (q - 1) value from the RSA private_exponent (d) and q. """ return private_exponent % (q - 1) # Controls the number of iterations rsa_recover_prime_factors will perform # to obtain the prime factors. Each iteration increments by 2 so the actual # maximum attempts is half this number. _MAX_RECOVERY_ATTEMPTS = 1000 def rsa_recover_prime_factors( n: int, e: int, d: int ) -> typing.Tuple[int, int]: """ Compute factors p and q from the private exponent d. We assume that n has no more than two factors. This function is adapted from code in PyCrypto. """ # See 8.2.2(i) in Handbook of Applied Cryptography. ktot = d * e - 1 # The quantity d*e-1 is a multiple of phi(n), even, # and can be represented as t*2^s. t = ktot while t % 2 == 0: t = t // 2 # Cycle through all multiplicative inverses in Zn. # The algorithm is non-deterministic, but there is a 50% chance # any candidate a leads to successful factoring. # See "Digitalized Signatures and Public Key Functions as Intractable # as Factorization", M. Rabin, 1979 spotted = False a = 2 while not spotted and a < _MAX_RECOVERY_ATTEMPTS: k = t # Cycle through all values a^{t*2^i}=a^k while k < ktot: cand = pow(a, k, n) # Check if a^k is a non-trivial root of unity (mod n) if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1: # We have found a number such that (cand-1)(cand+1)=0 (mod n). # Either of the terms divides n. p = gcd(cand + 1, n) spotted = True break k *= 2 # This value was not any good... let's try another! a += 2 if not spotted: raise ValueError("Unable to compute factors p and q from exponent d.") # Found ! q, r = divmod(n, p) assert r == 0 p, q = sorted((p, q), reverse=True) return (p, q) class RSAPrivateNumbers: def __init__( self, p: int, q: int, d: int, dmp1: int, dmq1: int, iqmp: int, public_numbers: RSAPublicNumbers, ): if ( not isinstance(p, int) or not isinstance(q, int) or not isinstance(d, int) or not isinstance(dmp1, int) or not isinstance(dmq1, int) or not isinstance(iqmp, int) ): raise TypeError( "RSAPrivateNumbers p, q, d, dmp1, dmq1, iqmp arguments must" " all be an integers." ) if not isinstance(public_numbers, RSAPublicNumbers): raise TypeError( "RSAPrivateNumbers public_numbers must be an RSAPublicNumbers" " instance." ) self._p = p self._q = q self._d = d self._dmp1 = dmp1 self._dmq1 = dmq1 self._iqmp = iqmp self._public_numbers = public_numbers @property def p(self) -> int: return self._p @property def q(self) -> int: return self._q @property def d(self) -> int: return self._d @property def dmp1(self) -> int: return self._dmp1 @property def dmq1(self) -> int: return self._dmq1 @property def iqmp(self) -> int: return self._iqmp @property def public_numbers(self) -> RSAPublicNumbers: return self._public_numbers def private_key( self, backend: typing.Any = None, *, unsafe_skip_rsa_key_validation: bool = False, ) -> RSAPrivateKey: from cryptography.hazmat.backends.openssl.backend import ( backend as ossl, ) return ossl.load_rsa_private_numbers( self, unsafe_skip_rsa_key_validation ) def __eq__(self, other: object) -> bool: if not isinstance(other, RSAPrivateNumbers): return NotImplemented return ( self.p == other.p and self.q == other.q and self.d == other.d and self.dmp1 == other.dmp1 and self.dmq1 == other.dmq1 and self.iqmp == other.iqmp and self.public_numbers == other.public_numbers ) def __hash__(self) -> int: return hash( ( self.p, self.q, self.d, self.dmp1, self.dmq1, self.iqmp, self.public_numbers, ) ) class RSAPublicNumbers: def __init__(self, e: int, n: int): if not isinstance(e, int) or not isinstance(n, int): raise TypeError("RSAPublicNumbers arguments must be integers.") self._e = e self._n = n @property def e(self) -> int: return self._e @property def n(self) -> int: return self._n def public_key(self, backend: typing.Any = None) -> RSAPublicKey: from cryptography.hazmat.backends.openssl.backend import ( backend as ossl, ) return ossl.load_rsa_public_numbers(self) def __repr__(self) -> str: return "<RSAPublicNumbers(e={0.e}, n={0.n})>".format(self) def __eq__(self, other: object) -> bool: if not isinstance(other, RSAPublicNumbers): return NotImplemented return self.e == other.e and self.n == other.n def __hash__(self) -> int: return hash((self.e, self.n))