Server IP : 66.29.132.122 / Your IP : 3.135.188.211 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/opt/alt/ruby18/lib64/ruby/1.8/ |
Upload File : |
# # rational.rb - # $Release Version: 0.5 $ # $Revision: 1.7 $ # $Date: 1999/08/24 12:49:28 $ # by Keiju ISHITSUKA(SHL Japan Inc.) # # Documentation by Kevin Jackson and Gavin Sinclair. # # When you <tt>require 'rational'</tt>, all interactions between numbers # potentially return a rational result. For example: # # 1.quo(2) # -> 0.5 # require 'rational' # 1.quo(2) # -> Rational(1,2) # # See Rational for full documentation. # # # Creates a Rational number (i.e. a fraction). +a+ and +b+ should be Integers: # # Rational(1,3) # -> 1/3 # # Note: trying to construct a Rational with floating point or real values # produces errors: # # Rational(1.1, 2.3) # -> NoMethodError # def Rational(a, b = 1) if a.kind_of?(Rational) && b == 1 a else Rational.reduce(a, b) end end # # Rational implements a rational class for numbers. # # <em>A rational number is a number that can be expressed as a fraction p/q # where p and q are integers and q != 0. A rational number p/q is said to have # numerator p and denominator q. Numbers that are not rational are called # irrational numbers.</em> (http://mathworld.wolfram.com/RationalNumber.html) # # To create a Rational Number: # Rational(a,b) # -> a/b # Rational.new!(a,b) # -> a/b # # Examples: # Rational(5,6) # -> 5/6 # Rational(5) # -> 5/1 # # Rational numbers are reduced to their lowest terms: # Rational(6,10) # -> 3/5 # # But not if you use the unusual method "new!": # Rational.new!(6,10) # -> 6/10 # # Division by zero is obviously not allowed: # Rational(3,0) # -> ZeroDivisionError # class Rational < Numeric @RCS_ID='-$Id: rational.rb,v 1.7 1999/08/24 12:49:28 keiju Exp keiju $-' # # Reduces the given numerator and denominator to their lowest terms. Use # Rational() instead. # def Rational.reduce(num, den = 1) raise ZeroDivisionError, "denominator is zero" if den == 0 if den < 0 num = -num den = -den end gcd = num.gcd(den) num = num.div(gcd) den = den.div(gcd) if den == 1 && defined?(Unify) num else new!(num, den) end end # # Implements the constructor. This method does not reduce to lowest terms or # check for division by zero. Therefore #Rational() should be preferred in # normal use. # def Rational.new!(num, den = 1) new(num, den) end private_class_method :new # # This method is actually private. # def initialize(num, den) if den < 0 num = -num den = -den end if num.kind_of?(Integer) and den.kind_of?(Integer) @numerator = num @denominator = den else @numerator = num.to_i @denominator = den.to_i end end # # Returns the addition of this value and +a+. # # Examples: # r = Rational(3,4) # -> Rational(3,4) # r + 1 # -> Rational(7,4) # r + 0.5 # -> 1.25 # def + (a) if a.kind_of?(Rational) num = @numerator * a.denominator num_a = a.numerator * @denominator Rational(num + num_a, @denominator * a.denominator) elsif a.kind_of?(Integer) self + Rational.new!(a, 1) elsif a.kind_of?(Float) Float(self) + a else x, y = a.coerce(self) x + y end end # # Returns the difference of this value and +a+. # subtracted. # # Examples: # r = Rational(3,4) # -> Rational(3,4) # r - 1 # -> Rational(-1,4) # r - 0.5 # -> 0.25 # def - (a) if a.kind_of?(Rational) num = @numerator * a.denominator num_a = a.numerator * @denominator Rational(num - num_a, @denominator*a.denominator) elsif a.kind_of?(Integer) self - Rational.new!(a, 1) elsif a.kind_of?(Float) Float(self) - a else x, y = a.coerce(self) x - y end end # # Returns the product of this value and +a+. # # Examples: # r = Rational(3,4) # -> Rational(3,4) # r * 2 # -> Rational(3,2) # r * 4 # -> Rational(3,1) # r * 0.5 # -> 0.375 # r * Rational(1,2) # -> Rational(3,8) # def * (a) if a.kind_of?(Rational) num = @numerator * a.numerator den = @denominator * a.denominator Rational(num, den) elsif a.kind_of?(Integer) self * Rational.new!(a, 1) elsif a.kind_of?(Float) Float(self) * a else x, y = a.coerce(self) x * y end end # # Returns the quotient of this value and +a+. # r = Rational(3,4) # -> Rational(3,4) # r / 2 # -> Rational(3,8) # r / 2.0 # -> 0.375 # r / Rational(1,2) # -> Rational(3,2) # def / (a) if a.kind_of?(Rational) num = @numerator * a.denominator den = @denominator * a.numerator Rational(num, den) elsif a.kind_of?(Integer) raise ZeroDivisionError, "division by zero" if a == 0 self / Rational.new!(a, 1) elsif a.kind_of?(Float) Float(self) / a else x, y = a.coerce(self) x / y end end # # Returns this value raised to the given power. # # Examples: # r = Rational(3,4) # -> Rational(3,4) # r ** 2 # -> Rational(9,16) # r ** 2.0 # -> 0.5625 # r ** Rational(1,2) # -> 0.866025403784439 # def ** (other) if other.kind_of?(Rational) Float(self) ** other elsif other.kind_of?(Integer) if other > 0 num = @numerator ** other den = @denominator ** other elsif other < 0 num = @denominator ** -other den = @numerator ** -other elsif other == 0 num = 1 den = 1 end Rational.new!(num, den) elsif other.kind_of?(Float) Float(self) ** other else x, y = other.coerce(self) x ** y end end def div(other) (self / other).floor end # # Returns the remainder when this value is divided by +other+. # # Examples: # r = Rational(7,4) # -> Rational(7,4) # r % Rational(1,2) # -> Rational(1,4) # r % 1 # -> Rational(3,4) # r % Rational(1,7) # -> Rational(1,28) # r % 0.26 # -> 0.19 # def % (other) value = (self / other).floor return self - other * value end # # Returns the quotient _and_ remainder. # # Examples: # r = Rational(7,4) # -> Rational(7,4) # r.divmod Rational(1,2) # -> [3, Rational(1,4)] # def divmod(other) value = (self / other).floor return value, self - other * value end # # Returns the absolute value. # def abs if @numerator > 0 self else Rational.new!(-@numerator, @denominator) end end # # Returns +true+ iff this value is numerically equal to +other+. # # But beware: # Rational(1,2) == Rational(4,8) # -> true # Rational(1,2) == Rational.new!(4,8) # -> false # # Don't use Rational.new! # def == (other) if other.kind_of?(Rational) @numerator == other.numerator and @denominator == other.denominator elsif other.kind_of?(Integer) self == Rational.new!(other, 1) elsif other.kind_of?(Float) Float(self) == other else other == self end end # # Standard comparison operator. # def <=> (other) if other.kind_of?(Rational) num = @numerator * other.denominator num_a = other.numerator * @denominator v = num - num_a if v > 0 return 1 elsif v < 0 return -1 else return 0 end elsif other.kind_of?(Integer) return self <=> Rational.new!(other, 1) elsif other.kind_of?(Float) return Float(self) <=> other elsif defined? other.coerce x, y = other.coerce(self) return x <=> y else return nil end end def coerce(other) if other.kind_of?(Float) return other, self.to_f elsif other.kind_of?(Integer) return Rational.new!(other, 1), self else super end end # # Converts the rational to an Integer. Not the _nearest_ integer, the # truncated integer. Study the following example carefully: # Rational(+7,4).to_i # -> 1 # Rational(-7,4).to_i # -> -1 # (-1.75).to_i # -> -1 # # In other words: # Rational(-7,4) == -1.75 # -> true # Rational(-7,4).to_i == (-1.75).to_i # -> true # def floor() @numerator.div(@denominator) end def ceil() -((-@numerator).div(@denominator)) end def truncate() if @numerator < 0 return -((-@numerator).div(@denominator)) end @numerator.div(@denominator) end alias_method :to_i, :truncate def round() if @numerator < 0 num = -@numerator num = num * 2 + @denominator den = @denominator * 2 -(num.div(den)) else num = @numerator * 2 + @denominator den = @denominator * 2 num.div(den) end end # # Converts the rational to a Float. # def to_f @numerator.fdiv(@denominator) end # # Returns a string representation of the rational number. # # Example: # Rational(3,4).to_s # "3/4" # Rational(8).to_s # "8" # def to_s if @denominator == 1 @numerator.to_s else @numerator.to_s+"/"+@denominator.to_s end end # # Returns +self+. # def to_r self end # # Returns a reconstructable string representation: # # Rational(5,8).inspect # -> "Rational(5, 8)" # def inspect sprintf("Rational(%s, %s)", @numerator.inspect, @denominator.inspect) end # # Returns a hash code for the object. # def hash @numerator.hash ^ @denominator.hash end attr :numerator attr :denominator private :initialize end class Integer # # In an integer, the value _is_ the numerator of its rational equivalent. # Therefore, this method returns +self+. # def numerator self end # # In an integer, the denominator is 1. Therefore, this method returns 1. # def denominator 1 end # # Returns a Rational representation of this integer. # def to_r Rational(self, 1) end # # Returns the <em>greatest common denominator</em> of the two numbers (+self+ # and +n+). # # Examples: # 72.gcd 168 # -> 24 # 19.gcd 36 # -> 1 # # The result is positive, no matter the sign of the arguments. # def gcd(other) min = self.abs max = other.abs while min > 0 tmp = min min = max % min max = tmp end max end # # Returns the <em>lowest common multiple</em> (LCM) of the two arguments # (+self+ and +other+). # # Examples: # 6.lcm 7 # -> 42 # 6.lcm 9 # -> 18 # def lcm(other) if self.zero? or other.zero? 0 else (self.div(self.gcd(other)) * other).abs end end # # Returns the GCD _and_ the LCM (see #gcd and #lcm) of the two arguments # (+self+ and +other+). This is more efficient than calculating them # separately. # # Example: # 6.gcdlcm 9 # -> [3, 18] # def gcdlcm(other) gcd = self.gcd(other) if self.zero? or other.zero? [gcd, 0] else [gcd, (self.div(gcd) * other).abs] end end end class Fixnum remove_method :quo # If Rational is defined, returns a Rational number instead of a Float. def quo(other) Rational.new!(self, 1) / other end alias rdiv quo # Returns a Rational number if the result is in fact rational (i.e. +other+ < 0). def rpower (other) if other >= 0 self.power!(other) else Rational.new!(self, 1)**other end end end class Bignum remove_method :quo # If Rational is defined, returns a Rational number instead of a Float. def quo(other) Rational.new!(self, 1) / other end alias rdiv quo # Returns a Rational number if the result is in fact rational (i.e. +other+ < 0). def rpower (other) if other >= 0 self.power!(other) else Rational.new!(self, 1)**other end end end unless defined? 1.power! class Fixnum alias power! ** alias ** rpower end class Bignum alias power! ** alias ** rpower end end