Server IP : 66.29.132.122 / Your IP : 3.144.97.97 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/proc/thread-self/root/opt/alt/python312/lib64/python3.12/ |
Upload File : |
"""Get useful information from live Python objects. This module encapsulates the interface provided by the internal special attributes (co_*, im_*, tb_*, etc.) in a friendlier fashion. It also provides some help for examining source code and class layout. Here are some of the useful functions provided by this module: ismodule(), isclass(), ismethod(), isfunction(), isgeneratorfunction(), isgenerator(), istraceback(), isframe(), iscode(), isbuiltin(), isroutine() - check object types getmembers() - get members of an object that satisfy a given condition getfile(), getsourcefile(), getsource() - find an object's source code getdoc(), getcomments() - get documentation on an object getmodule() - determine the module that an object came from getclasstree() - arrange classes so as to represent their hierarchy getargvalues(), getcallargs() - get info about function arguments getfullargspec() - same, with support for Python 3 features formatargvalues() - format an argument spec getouterframes(), getinnerframes() - get info about frames currentframe() - get the current stack frame stack(), trace() - get info about frames on the stack or in a traceback signature() - get a Signature object for the callable get_annotations() - safely compute an object's annotations """ # This module is in the public domain. No warranties. __author__ = ('Ka-Ping Yee <ping@lfw.org>', 'Yury Selivanov <yselivanov@sprymix.com>') __all__ = [ "AGEN_CLOSED", "AGEN_CREATED", "AGEN_RUNNING", "AGEN_SUSPENDED", "ArgInfo", "Arguments", "Attribute", "BlockFinder", "BoundArguments", "BufferFlags", "CORO_CLOSED", "CORO_CREATED", "CORO_RUNNING", "CORO_SUSPENDED", "CO_ASYNC_GENERATOR", "CO_COROUTINE", "CO_GENERATOR", "CO_ITERABLE_COROUTINE", "CO_NESTED", "CO_NEWLOCALS", "CO_NOFREE", "CO_OPTIMIZED", "CO_VARARGS", "CO_VARKEYWORDS", "ClassFoundException", "ClosureVars", "EndOfBlock", "FrameInfo", "FullArgSpec", "GEN_CLOSED", "GEN_CREATED", "GEN_RUNNING", "GEN_SUSPENDED", "Parameter", "Signature", "TPFLAGS_IS_ABSTRACT", "Traceback", "classify_class_attrs", "cleandoc", "currentframe", "findsource", "formatannotation", "formatannotationrelativeto", "formatargvalues", "get_annotations", "getabsfile", "getargs", "getargvalues", "getasyncgenlocals", "getasyncgenstate", "getattr_static", "getblock", "getcallargs", "getclasstree", "getclosurevars", "getcomments", "getcoroutinelocals", "getcoroutinestate", "getdoc", "getfile", "getframeinfo", "getfullargspec", "getgeneratorlocals", "getgeneratorstate", "getinnerframes", "getlineno", "getmembers", "getmembers_static", "getmodule", "getmodulename", "getmro", "getouterframes", "getsource", "getsourcefile", "getsourcelines", "indentsize", "isabstract", "isasyncgen", "isasyncgenfunction", "isawaitable", "isbuiltin", "isclass", "iscode", "iscoroutine", "iscoroutinefunction", "isdatadescriptor", "isframe", "isfunction", "isgenerator", "isgeneratorfunction", "isgetsetdescriptor", "ismemberdescriptor", "ismethod", "ismethoddescriptor", "ismethodwrapper", "ismodule", "isroutine", "istraceback", "markcoroutinefunction", "signature", "stack", "trace", "unwrap", "walktree", ] import abc import ast import dis import collections.abc import enum import importlib.machinery import itertools import linecache import os import re import sys import tokenize import token import types import functools import builtins from keyword import iskeyword from operator import attrgetter from collections import namedtuple, OrderedDict from weakref import ref as make_weakref # Create constants for the compiler flags in Include/code.h # We try to get them from dis to avoid duplication mod_dict = globals() for k, v in dis.COMPILER_FLAG_NAMES.items(): mod_dict["CO_" + v] = k del k, v, mod_dict # See Include/object.h TPFLAGS_IS_ABSTRACT = 1 << 20 def get_annotations(obj, *, globals=None, locals=None, eval_str=False): """Compute the annotations dict for an object. obj may be a callable, class, or module. Passing in an object of any other type raises TypeError. Returns a dict. get_annotations() returns a new dict every time it's called; calling it twice on the same object will return two different but equivalent dicts. This function handles several details for you: * If eval_str is true, values of type str will be un-stringized using eval(). This is intended for use with stringized annotations ("from __future__ import annotations"). * If obj doesn't have an annotations dict, returns an empty dict. (Functions and methods always have an annotations dict; classes, modules, and other types of callables may not.) * Ignores inherited annotations on classes. If a class doesn't have its own annotations dict, returns an empty dict. * All accesses to object members and dict values are done using getattr() and dict.get() for safety. * Always, always, always returns a freshly-created dict. eval_str controls whether or not values of type str are replaced with the result of calling eval() on those values: * If eval_str is true, eval() is called on values of type str. * If eval_str is false (the default), values of type str are unchanged. globals and locals are passed in to eval(); see the documentation for eval() for more information. If either globals or locals is None, this function may replace that value with a context-specific default, contingent on type(obj): * If obj is a module, globals defaults to obj.__dict__. * If obj is a class, globals defaults to sys.modules[obj.__module__].__dict__ and locals defaults to the obj class namespace. * If obj is a callable, globals defaults to obj.__globals__, although if obj is a wrapped function (using functools.update_wrapper()) it is first unwrapped. """ if isinstance(obj, type): # class obj_dict = getattr(obj, '__dict__', None) if obj_dict and hasattr(obj_dict, 'get'): ann = obj_dict.get('__annotations__', None) if isinstance(ann, types.GetSetDescriptorType): ann = None else: ann = None obj_globals = None module_name = getattr(obj, '__module__', None) if module_name: module = sys.modules.get(module_name, None) if module: obj_globals = getattr(module, '__dict__', None) obj_locals = dict(vars(obj)) unwrap = obj elif isinstance(obj, types.ModuleType): # module ann = getattr(obj, '__annotations__', None) obj_globals = getattr(obj, '__dict__') obj_locals = None unwrap = None elif callable(obj): # this includes types.Function, types.BuiltinFunctionType, # types.BuiltinMethodType, functools.partial, functools.singledispatch, # "class funclike" from Lib/test/test_inspect... on and on it goes. ann = getattr(obj, '__annotations__', None) obj_globals = getattr(obj, '__globals__', None) obj_locals = None unwrap = obj else: raise TypeError(f"{obj!r} is not a module, class, or callable.") if ann is None: return {} if not isinstance(ann, dict): raise ValueError(f"{obj!r}.__annotations__ is neither a dict nor None") if not ann: return {} if not eval_str: return dict(ann) if unwrap is not None: while True: if hasattr(unwrap, '__wrapped__'): unwrap = unwrap.__wrapped__ continue if isinstance(unwrap, functools.partial): unwrap = unwrap.func continue break if hasattr(unwrap, "__globals__"): obj_globals = unwrap.__globals__ if globals is None: globals = obj_globals if locals is None: locals = obj_locals or {} # "Inject" type parameters into the local namespace # (unless they are shadowed by assignments *in* the local namespace), # as a way of emulating annotation scopes when calling `eval()` if type_params := getattr(obj, "__type_params__", ()): locals = {param.__name__: param for param in type_params} | locals return_value = {key: value if not isinstance(value, str) else eval(value, globals, locals) for key, value in ann.items() } return return_value # ----------------------------------------------------------- type-checking def ismodule(object): """Return true if the object is a module.""" return isinstance(object, types.ModuleType) def isclass(object): """Return true if the object is a class.""" return isinstance(object, type) def ismethod(object): """Return true if the object is an instance method.""" return isinstance(object, types.MethodType) def ismethoddescriptor(object): """Return true if the object is a method descriptor. But not if ismethod() or isclass() or isfunction() are true. This is new in Python 2.2, and, for example, is true of int.__add__. An object passing this test has a __get__ attribute but not a __set__ attribute, but beyond that the set of attributes varies. __name__ is usually sensible, and __doc__ often is. Methods implemented via descriptors that also pass one of the other tests return false from the ismethoddescriptor() test, simply because the other tests promise more -- you can, e.g., count on having the __func__ attribute (etc) when an object passes ismethod().""" if isclass(object) or ismethod(object) or isfunction(object): # mutual exclusion return False tp = type(object) return hasattr(tp, "__get__") and not hasattr(tp, "__set__") def isdatadescriptor(object): """Return true if the object is a data descriptor. Data descriptors have a __set__ or a __delete__ attribute. Examples are properties (defined in Python) and getsets and members (defined in C). Typically, data descriptors will also have __name__ and __doc__ attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed.""" if isclass(object) or ismethod(object) or isfunction(object): # mutual exclusion return False tp = type(object) return hasattr(tp, "__set__") or hasattr(tp, "__delete__") if hasattr(types, 'MemberDescriptorType'): # CPython and equivalent def ismemberdescriptor(object): """Return true if the object is a member descriptor. Member descriptors are specialized descriptors defined in extension modules.""" return isinstance(object, types.MemberDescriptorType) else: # Other implementations def ismemberdescriptor(object): """Return true if the object is a member descriptor. Member descriptors are specialized descriptors defined in extension modules.""" return False if hasattr(types, 'GetSetDescriptorType'): # CPython and equivalent def isgetsetdescriptor(object): """Return true if the object is a getset descriptor. getset descriptors are specialized descriptors defined in extension modules.""" return isinstance(object, types.GetSetDescriptorType) else: # Other implementations def isgetsetdescriptor(object): """Return true if the object is a getset descriptor. getset descriptors are specialized descriptors defined in extension modules.""" return False def isfunction(object): """Return true if the object is a user-defined function. Function objects provide these attributes: __doc__ documentation string __name__ name with which this function was defined __code__ code object containing compiled function bytecode __defaults__ tuple of any default values for arguments __globals__ global namespace in which this function was defined __annotations__ dict of parameter annotations __kwdefaults__ dict of keyword only parameters with defaults""" return isinstance(object, types.FunctionType) def _has_code_flag(f, flag): """Return true if ``f`` is a function (or a method or functools.partial wrapper wrapping a function) whose code object has the given ``flag`` set in its flags.""" while ismethod(f): f = f.__func__ f = functools._unwrap_partial(f) if not (isfunction(f) or _signature_is_functionlike(f)): return False return bool(f.__code__.co_flags & flag) def isgeneratorfunction(obj): """Return true if the object is a user-defined generator function. Generator function objects provide the same attributes as functions. See help(isfunction) for a list of attributes.""" return _has_code_flag(obj, CO_GENERATOR) # A marker for markcoroutinefunction and iscoroutinefunction. _is_coroutine_mark = object() def _has_coroutine_mark(f): while ismethod(f): f = f.__func__ f = functools._unwrap_partial(f) return getattr(f, "_is_coroutine_marker", None) is _is_coroutine_mark def markcoroutinefunction(func): """ Decorator to ensure callable is recognised as a coroutine function. """ if hasattr(func, '__func__'): func = func.__func__ func._is_coroutine_marker = _is_coroutine_mark return func def iscoroutinefunction(obj): """Return true if the object is a coroutine function. Coroutine functions are normally defined with "async def" syntax, but may be marked via markcoroutinefunction. """ return _has_code_flag(obj, CO_COROUTINE) or _has_coroutine_mark(obj) def isasyncgenfunction(obj): """Return true if the object is an asynchronous generator function. Asynchronous generator functions are defined with "async def" syntax and have "yield" expressions in their body. """ return _has_code_flag(obj, CO_ASYNC_GENERATOR) def isasyncgen(object): """Return true if the object is an asynchronous generator.""" return isinstance(object, types.AsyncGeneratorType) def isgenerator(object): """Return true if the object is a generator. Generator objects provide these attributes: __iter__ defined to support iteration over container close raises a new GeneratorExit exception inside the generator to terminate the iteration gi_code code object gi_frame frame object or possibly None once the generator has been exhausted gi_running set to 1 when generator is executing, 0 otherwise next return the next item from the container send resumes the generator and "sends" a value that becomes the result of the current yield-expression throw used to raise an exception inside the generator""" return isinstance(object, types.GeneratorType) def iscoroutine(object): """Return true if the object is a coroutine.""" return isinstance(object, types.CoroutineType) def isawaitable(object): """Return true if object can be passed to an ``await`` expression.""" return (isinstance(object, types.CoroutineType) or isinstance(object, types.GeneratorType) and bool(object.gi_code.co_flags & CO_ITERABLE_COROUTINE) or isinstance(object, collections.abc.Awaitable)) def istraceback(object): """Return true if the object is a traceback. Traceback objects provide these attributes: tb_frame frame object at this level tb_lasti index of last attempted instruction in bytecode tb_lineno current line number in Python source code tb_next next inner traceback object (called by this level)""" return isinstance(object, types.TracebackType) def isframe(object): """Return true if the object is a frame object. Frame objects provide these attributes: f_back next outer frame object (this frame's caller) f_builtins built-in namespace seen by this frame f_code code object being executed in this frame f_globals global namespace seen by this frame f_lasti index of last attempted instruction in bytecode f_lineno current line number in Python source code f_locals local namespace seen by this frame f_trace tracing function for this frame, or None""" return isinstance(object, types.FrameType) def iscode(object): """Return true if the object is a code object. Code objects provide these attributes: co_argcount number of arguments (not including *, ** args or keyword only arguments) co_code string of raw compiled bytecode co_cellvars tuple of names of cell variables co_consts tuple of constants used in the bytecode co_filename name of file in which this code object was created co_firstlineno number of first line in Python source code co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg | 16=nested | 32=generator | 64=nofree | 128=coroutine | 256=iterable_coroutine | 512=async_generator co_freevars tuple of names of free variables co_posonlyargcount number of positional only arguments co_kwonlyargcount number of keyword only arguments (not including ** arg) co_lnotab encoded mapping of line numbers to bytecode indices co_name name with which this code object was defined co_names tuple of names other than arguments and function locals co_nlocals number of local variables co_stacksize virtual machine stack space required co_varnames tuple of names of arguments and local variables""" return isinstance(object, types.CodeType) def isbuiltin(object): """Return true if the object is a built-in function or method. Built-in functions and methods provide these attributes: __doc__ documentation string __name__ original name of this function or method __self__ instance to which a method is bound, or None""" return isinstance(object, types.BuiltinFunctionType) def ismethodwrapper(object): """Return true if the object is a method wrapper.""" return isinstance(object, types.MethodWrapperType) def isroutine(object): """Return true if the object is any kind of function or method.""" return (isbuiltin(object) or isfunction(object) or ismethod(object) or ismethoddescriptor(object) or ismethodwrapper(object)) def isabstract(object): """Return true if the object is an abstract base class (ABC).""" if not isinstance(object, type): return False if object.__flags__ & TPFLAGS_IS_ABSTRACT: return True if not issubclass(type(object), abc.ABCMeta): return False if hasattr(object, '__abstractmethods__'): # It looks like ABCMeta.__new__ has finished running; # TPFLAGS_IS_ABSTRACT should have been accurate. return False # It looks like ABCMeta.__new__ has not finished running yet; we're # probably in __init_subclass__. We'll look for abstractmethods manually. for name, value in object.__dict__.items(): if getattr(value, "__isabstractmethod__", False): return True for base in object.__bases__: for name in getattr(base, "__abstractmethods__", ()): value = getattr(object, name, None) if getattr(value, "__isabstractmethod__", False): return True return False def _getmembers(object, predicate, getter): results = [] processed = set() names = dir(object) if isclass(object): mro = getmro(object) # add any DynamicClassAttributes to the list of names if object is a class; # this may result in duplicate entries if, for example, a virtual # attribute with the same name as a DynamicClassAttribute exists try: for base in object.__bases__: for k, v in base.__dict__.items(): if isinstance(v, types.DynamicClassAttribute): names.append(k) except AttributeError: pass else: mro = () for key in names: # First try to get the value via getattr. Some descriptors don't # like calling their __get__ (see bug #1785), so fall back to # looking in the __dict__. try: value = getter(object, key) # handle the duplicate key if key in processed: raise AttributeError except AttributeError: for base in mro: if key in base.__dict__: value = base.__dict__[key] break else: # could be a (currently) missing slot member, or a buggy # __dir__; discard and move on continue if not predicate or predicate(value): results.append((key, value)) processed.add(key) results.sort(key=lambda pair: pair[0]) return results def getmembers(object, predicate=None): """Return all members of an object as (name, value) pairs sorted by name. Optionally, only return members that satisfy a given predicate.""" return _getmembers(object, predicate, getattr) def getmembers_static(object, predicate=None): """Return all members of an object as (name, value) pairs sorted by name without triggering dynamic lookup via the descriptor protocol, __getattr__ or __getattribute__. Optionally, only return members that satisfy a given predicate. Note: this function may not be able to retrieve all members that getmembers can fetch (like dynamically created attributes) and may find members that getmembers can't (like descriptors that raise AttributeError). It can also return descriptor objects instead of instance members in some cases. """ return _getmembers(object, predicate, getattr_static) Attribute = namedtuple('Attribute', 'name kind defining_class object') def classify_class_attrs(cls): """Return list of attribute-descriptor tuples. For each name in dir(cls), the return list contains a 4-tuple with these elements: 0. The name (a string). 1. The kind of attribute this is, one of these strings: 'class method' created via classmethod() 'static method' created via staticmethod() 'property' created via property() 'method' any other flavor of method or descriptor 'data' not a method 2. The class which defined this attribute (a class). 3. The object as obtained by calling getattr; if this fails, or if the resulting object does not live anywhere in the class' mro (including metaclasses) then the object is looked up in the defining class's dict (found by walking the mro). If one of the items in dir(cls) is stored in the metaclass it will now be discovered and not have None be listed as the class in which it was defined. Any items whose home class cannot be discovered are skipped. """ mro = getmro(cls) metamro = getmro(type(cls)) # for attributes stored in the metaclass metamro = tuple(cls for cls in metamro if cls not in (type, object)) class_bases = (cls,) + mro all_bases = class_bases + metamro names = dir(cls) # :dd any DynamicClassAttributes to the list of names; # this may result in duplicate entries if, for example, a virtual # attribute with the same name as a DynamicClassAttribute exists. for base in mro: for k, v in base.__dict__.items(): if isinstance(v, types.DynamicClassAttribute) and v.fget is not None: names.append(k) result = [] processed = set() for name in names: # Get the object associated with the name, and where it was defined. # Normal objects will be looked up with both getattr and directly in # its class' dict (in case getattr fails [bug #1785], and also to look # for a docstring). # For DynamicClassAttributes on the second pass we only look in the # class's dict. # # Getting an obj from the __dict__ sometimes reveals more than # using getattr. Static and class methods are dramatic examples. homecls = None get_obj = None dict_obj = None if name not in processed: try: if name == '__dict__': raise Exception("__dict__ is special, don't want the proxy") get_obj = getattr(cls, name) except Exception: pass else: homecls = getattr(get_obj, "__objclass__", homecls) if homecls not in class_bases: # if the resulting object does not live somewhere in the # mro, drop it and search the mro manually homecls = None last_cls = None # first look in the classes for srch_cls in class_bases: srch_obj = getattr(srch_cls, name, None) if srch_obj is get_obj: last_cls = srch_cls # then check the metaclasses for srch_cls in metamro: try: srch_obj = srch_cls.__getattr__(cls, name) except AttributeError: continue if srch_obj is get_obj: last_cls = srch_cls if last_cls is not None: homecls = last_cls for base in all_bases: if name in base.__dict__: dict_obj = base.__dict__[name] if homecls not in metamro: homecls = base break if homecls is None: # unable to locate the attribute anywhere, most likely due to # buggy custom __dir__; discard and move on continue obj = get_obj if get_obj is not None else dict_obj # Classify the object or its descriptor. if isinstance(dict_obj, (staticmethod, types.BuiltinMethodType)): kind = "static method" obj = dict_obj elif isinstance(dict_obj, (classmethod, types.ClassMethodDescriptorType)): kind = "class method" obj = dict_obj elif isinstance(dict_obj, property): kind = "property" obj = dict_obj elif isroutine(obj): kind = "method" else: kind = "data" result.append(Attribute(name, kind, homecls, obj)) processed.add(name) return result # ----------------------------------------------------------- class helpers def getmro(cls): "Return tuple of base classes (including cls) in method resolution order." return cls.__mro__ # -------------------------------------------------------- function helpers def unwrap(func, *, stop=None): """Get the object wrapped by *func*. Follows the chain of :attr:`__wrapped__` attributes returning the last object in the chain. *stop* is an optional callback accepting an object in the wrapper chain as its sole argument that allows the unwrapping to be terminated early if the callback returns a true value. If the callback never returns a true value, the last object in the chain is returned as usual. For example, :func:`signature` uses this to stop unwrapping if any object in the chain has a ``__signature__`` attribute defined. :exc:`ValueError` is raised if a cycle is encountered. """ f = func # remember the original func for error reporting # Memoise by id to tolerate non-hashable objects, but store objects to # ensure they aren't destroyed, which would allow their IDs to be reused. memo = {id(f): f} recursion_limit = sys.getrecursionlimit() while not isinstance(func, type) and hasattr(func, '__wrapped__'): if stop is not None and stop(func): break func = func.__wrapped__ id_func = id(func) if (id_func in memo) or (len(memo) >= recursion_limit): raise ValueError('wrapper loop when unwrapping {!r}'.format(f)) memo[id_func] = func return func # -------------------------------------------------- source code extraction def indentsize(line): """Return the indent size, in spaces, at the start of a line of text.""" expline = line.expandtabs() return len(expline) - len(expline.lstrip()) def _findclass(func): cls = sys.modules.get(func.__module__) if cls is None: return None for name in func.__qualname__.split('.')[:-1]: cls = getattr(cls, name) if not isclass(cls): return None return cls def _finddoc(obj): if isclass(obj): for base in obj.__mro__: if base is not object: try: doc = base.__doc__ except AttributeError: continue if doc is not None: return doc return None if ismethod(obj): name = obj.__func__.__name__ self = obj.__self__ if (isclass(self) and getattr(getattr(self, name, None), '__func__') is obj.__func__): # classmethod cls = self else: cls = self.__class__ elif isfunction(obj): name = obj.__name__ cls = _findclass(obj) if cls is None or getattr(cls, name) is not obj: return None elif isbuiltin(obj): name = obj.__name__ self = obj.__self__ if (isclass(self) and self.__qualname__ + '.' + name == obj.__qualname__): # classmethod cls = self else: cls = self.__class__ # Should be tested before isdatadescriptor(). elif isinstance(obj, property): func = obj.fget name = func.__name__ cls = _findclass(func) if cls is None or getattr(cls, name) is not obj: return None elif ismethoddescriptor(obj) or isdatadescriptor(obj): name = obj.__name__ cls = obj.__objclass__ if getattr(cls, name) is not obj: return None if ismemberdescriptor(obj): slots = getattr(cls, '__slots__', None) if isinstance(slots, dict) and name in slots: return slots[name] else: return None for base in cls.__mro__: try: doc = getattr(base, name).__doc__ except AttributeError: continue if doc is not None: return doc return None def getdoc(object): """Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are indented to line up with blocks of code, any whitespace than can be uniformly removed from the second line onwards is removed.""" try: doc = object.__doc__ except AttributeError: return None if doc is None: try: doc = _finddoc(object) except (AttributeError, TypeError): return None if not isinstance(doc, str): return None return cleandoc(doc) def cleandoc(doc): """Clean up indentation from docstrings. Any whitespace that can be uniformly removed from the second line onwards is removed.""" try: lines = doc.expandtabs().split('\n') except UnicodeError: return None else: # Find minimum indentation of any non-blank lines after first line. margin = sys.maxsize for line in lines[1:]: content = len(line.lstrip()) if content: indent = len(line) - content margin = min(margin, indent) # Remove indentation. if lines: lines[0] = lines[0].lstrip() if margin < sys.maxsize: for i in range(1, len(lines)): lines[i] = lines[i][margin:] # Remove any trailing or leading blank lines. while lines and not lines[-1]: lines.pop() while lines and not lines[0]: lines.pop(0) return '\n'.join(lines) def getfile(object): """Work out which source or compiled file an object was defined in.""" if ismodule(object): if getattr(object, '__file__', None): return object.__file__ raise TypeError('{!r} is a built-in module'.format(object)) if isclass(object): if hasattr(object, '__module__'): module = sys.modules.get(object.__module__) if getattr(module, '__file__', None): return module.__file__ if object.__module__ == '__main__': raise OSError('source code not available') raise TypeError('{!r} is a built-in class'.format(object)) if ismethod(object): object = object.__func__ if isfunction(object): object = object.__code__ if istraceback(object): object = object.tb_frame if isframe(object): object = object.f_code if iscode(object): return object.co_filename raise TypeError('module, class, method, function, traceback, frame, or ' 'code object was expected, got {}'.format( type(object).__name__)) def getmodulename(path): """Return the module name for a given file, or None.""" fname = os.path.basename(path) # Check for paths that look like an actual module file suffixes = [(-len(suffix), suffix) for suffix in importlib.machinery.all_suffixes()] suffixes.sort() # try longest suffixes first, in case they overlap for neglen, suffix in suffixes: if fname.endswith(suffix): return fname[:neglen] return None def getsourcefile(object): """Return the filename that can be used to locate an object's source. Return None if no way can be identified to get the source. """ filename = getfile(object) all_bytecode_suffixes = importlib.machinery.DEBUG_BYTECODE_SUFFIXES[:] all_bytecode_suffixes += importlib.machinery.OPTIMIZED_BYTECODE_SUFFIXES[:] if any(filename.endswith(s) for s in all_bytecode_suffixes): filename = (os.path.splitext(filename)[0] + importlib.machinery.SOURCE_SUFFIXES[0]) elif any(filename.endswith(s) for s in importlib.machinery.EXTENSION_SUFFIXES): return None # return a filename found in the linecache even if it doesn't exist on disk if filename in linecache.cache: return filename if os.path.exists(filename): return filename # only return a non-existent filename if the module has a PEP 302 loader module = getmodule(object, filename) if getattr(module, '__loader__', None) is not None: return filename elif getattr(getattr(module, "__spec__", None), "loader", None) is not None: return filename def getabsfile(object, _filename=None): """Return an absolute path to the source or compiled file for an object. The idea is for each object to have a unique origin, so this routine normalizes the result as much as possible.""" if _filename is None: _filename = getsourcefile(object) or getfile(object) return os.path.normcase(os.path.abspath(_filename)) modulesbyfile = {} _filesbymodname = {} def getmodule(object, _filename=None): """Return the module an object was defined in, or None if not found.""" if ismodule(object): return object if hasattr(object, '__module__'): return sys.modules.get(object.__module__) # Try the filename to modulename cache if _filename is not None and _filename in modulesbyfile: return sys.modules.get(modulesbyfile[_filename]) # Try the cache again with the absolute file name try: file = getabsfile(object, _filename) except (TypeError, FileNotFoundError): return None if file in modulesbyfile: return sys.modules.get(modulesbyfile[file]) # Update the filename to module name cache and check yet again # Copy sys.modules in order to cope with changes while iterating for modname, module in sys.modules.copy().items(): if ismodule(module) and hasattr(module, '__file__'): f = module.__file__ if f == _filesbymodname.get(modname, None): # Have already mapped this module, so skip it continue _filesbymodname[modname] = f f = getabsfile(module) # Always map to the name the module knows itself by modulesbyfile[f] = modulesbyfile[ os.path.realpath(f)] = module.__name__ if file in modulesbyfile: return sys.modules.get(modulesbyfile[file]) # Check the main module main = sys.modules['__main__'] if not hasattr(object, '__name__'): return None if hasattr(main, object.__name__): mainobject = getattr(main, object.__name__) if mainobject is object: return main # Check builtins builtin = sys.modules['builtins'] if hasattr(builtin, object.__name__): builtinobject = getattr(builtin, object.__name__) if builtinobject is object: return builtin class ClassFoundException(Exception): pass class _ClassFinder(ast.NodeVisitor): def __init__(self, qualname): self.stack = [] self.qualname = qualname def visit_FunctionDef(self, node): self.stack.append(node.name) self.stack.append('<locals>') self.generic_visit(node) self.stack.pop() self.stack.pop() visit_AsyncFunctionDef = visit_FunctionDef def visit_ClassDef(self, node): self.stack.append(node.name) if self.qualname == '.'.join(self.stack): # Return the decorator for the class if present if node.decorator_list: line_number = node.decorator_list[0].lineno else: line_number = node.lineno # decrement by one since lines starts with indexing by zero line_number -= 1 raise ClassFoundException(line_number) self.generic_visit(node) self.stack.pop() def findsource(object): """Return the entire source file and starting line number for an object. The argument may be a module, class, method, function, traceback, frame, or code object. The source code is returned as a list of all the lines in the file and the line number indexes a line in that list. An OSError is raised if the source code cannot be retrieved.""" file = getsourcefile(object) if file: # Invalidate cache if needed. linecache.checkcache(file) else: file = getfile(object) # Allow filenames in form of "<something>" to pass through. # `doctest` monkeypatches `linecache` module to enable # inspection, so let `linecache.getlines` to be called. if not (file.startswith('<') and file.endswith('>')): raise OSError('source code not available') module = getmodule(object, file) if module: lines = linecache.getlines(file, module.__dict__) else: lines = linecache.getlines(file) if not lines: raise OSError('could not get source code') if ismodule(object): return lines, 0 if isclass(object): qualname = object.__qualname__ source = ''.join(lines) tree = ast.parse(source) class_finder = _ClassFinder(qualname) try: class_finder.visit(tree) except ClassFoundException as e: line_number = e.args[0] return lines, line_number else: raise OSError('could not find class definition') if ismethod(object): object = object.__func__ if isfunction(object): object = object.__code__ if istraceback(object): object = object.tb_frame if isframe(object): object = object.f_code if iscode(object): if not hasattr(object, 'co_firstlineno'): raise OSError('could not find function definition') lnum = object.co_firstlineno - 1 pat = re.compile(r'^(\s*def\s)|(\s*async\s+def\s)|(.*(?<!\w)lambda(:|\s))|^(\s*@)') while lnum > 0: try: line = lines[lnum] except IndexError: raise OSError('lineno is out of bounds') if pat.match(line): break lnum = lnum - 1 return lines, lnum raise OSError('could not find code object') def getcomments(object): """Get lines of comments immediately preceding an object's source code. Returns None when source can't be found. """ try: lines, lnum = findsource(object) except (OSError, TypeError): return None if ismodule(object): # Look for a comment block at the top of the file. start = 0 if lines and lines[0][:2] == '#!': start = 1 while start < len(lines) and lines[start].strip() in ('', '#'): start = start + 1 if start < len(lines) and lines[start][:1] == '#': comments = [] end = start while end < len(lines) and lines[end][:1] == '#': comments.append(lines[end].expandtabs()) end = end + 1 return ''.join(comments) # Look for a preceding block of comments at the same indentation. elif lnum > 0: indent = indentsize(lines[lnum]) end = lnum - 1 if end >= 0 and lines[end].lstrip()[:1] == '#' and \ indentsize(lines[end]) == indent: comments = [lines[end].expandtabs().lstrip()] if end > 0: end = end - 1 comment = lines[end].expandtabs().lstrip() while comment[:1] == '#' and indentsize(lines[end]) == indent: comments[:0] = [comment] end = end - 1 if end < 0: break comment = lines[end].expandtabs().lstrip() while comments and comments[0].strip() == '#': comments[:1] = [] while comments and comments[-1].strip() == '#': comments[-1:] = [] return ''.join(comments) class EndOfBlock(Exception): pass class BlockFinder: """Provide a tokeneater() method to detect the end of a code block.""" def __init__(self): self.indent = 0 self.islambda = False self.started = False self.passline = False self.indecorator = False self.last = 1 self.body_col0 = None def tokeneater(self, type, token, srowcol, erowcol, line): if not self.started and not self.indecorator: # skip any decorators if token == "@": self.indecorator = True # look for the first "def", "class" or "lambda" elif token in ("def", "class", "lambda"): if token == "lambda": self.islambda = True self.started = True self.passline = True # skip to the end of the line elif type == tokenize.NEWLINE: self.passline = False # stop skipping when a NEWLINE is seen self.last = srowcol[0] if self.islambda: # lambdas always end at the first NEWLINE raise EndOfBlock # hitting a NEWLINE when in a decorator without args # ends the decorator if self.indecorator: self.indecorator = False elif self.passline: pass elif type == tokenize.INDENT: if self.body_col0 is None and self.started: self.body_col0 = erowcol[1] self.indent = self.indent + 1 self.passline = True elif type == tokenize.DEDENT: self.indent = self.indent - 1 # the end of matching indent/dedent pairs end a block # (note that this only works for "def"/"class" blocks, # not e.g. for "if: else:" or "try: finally:" blocks) if self.indent <= 0: raise EndOfBlock elif type == tokenize.COMMENT: if self.body_col0 is not None and srowcol[1] >= self.body_col0: # Include comments if indented at least as much as the block self.last = srowcol[0] elif self.indent == 0 and type not in (tokenize.COMMENT, tokenize.NL): # any other token on the same indentation level end the previous # block as well, except the pseudo-tokens COMMENT and NL. raise EndOfBlock def getblock(lines): """Extract the block of code at the top of the given list of lines.""" blockfinder = BlockFinder() try: tokens = tokenize.generate_tokens(iter(lines).__next__) for _token in tokens: blockfinder.tokeneater(*_token) except (EndOfBlock, IndentationError): pass except SyntaxError as e: if "unmatched" not in e.msg: raise e from None _, *_token_info = _token try: blockfinder.tokeneater(tokenize.NEWLINE, *_token_info) except (EndOfBlock, IndentationError): pass return lines[:blockfinder.last] def getsourcelines(object): """Return a list of source lines and starting line number for an object. The argument may be a module, class, method, function, traceback, frame, or code object. The source code is returned as a list of the lines corresponding to the object and the line number indicates where in the original source file the first line of code was found. An OSError is raised if the source code cannot be retrieved.""" object = unwrap(object) lines, lnum = findsource(object) if istraceback(object): object = object.tb_frame # for module or frame that corresponds to module, return all source lines if (ismodule(object) or (isframe(object) and object.f_code.co_name == "<module>")): return lines, 0 else: return getblock(lines[lnum:]), lnum + 1 def getsource(object): """Return the text of the source code for an object. The argument may be a module, class, method, function, traceback, frame, or code object. The source code is returned as a single string. An OSError is raised if the source code cannot be retrieved.""" lines, lnum = getsourcelines(object) return ''.join(lines) # --------------------------------------------------- class tree extraction def walktree(classes, children, parent): """Recursive helper function for getclasstree().""" results = [] classes.sort(key=attrgetter('__module__', '__name__')) for c in classes: results.append((c, c.__bases__)) if c in children: results.append(walktree(children[c], children, c)) return results def getclasstree(classes, unique=False): """Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and a tuple of its base classes. If the 'unique' argument is true, exactly one entry appears in the returned structure for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear multiple times.""" children = {} roots = [] for c in classes: if c.__bases__: for parent in c.__bases__: if parent not in children: children[parent] = [] if c not in children[parent]: children[parent].append(c) if unique and parent in classes: break elif c not in roots: roots.append(c) for parent in children: if parent not in classes: roots.append(parent) return walktree(roots, children, None) # ------------------------------------------------ argument list extraction Arguments = namedtuple('Arguments', 'args, varargs, varkw') def getargs(co): """Get information about the arguments accepted by a code object. Three things are returned: (args, varargs, varkw), where 'args' is the list of argument names. Keyword-only arguments are appended. 'varargs' and 'varkw' are the names of the * and ** arguments or None.""" if not iscode(co): raise TypeError('{!r} is not a code object'.format(co)) names = co.co_varnames nargs = co.co_argcount nkwargs = co.co_kwonlyargcount args = list(names[:nargs]) kwonlyargs = list(names[nargs:nargs+nkwargs]) nargs += nkwargs varargs = None if co.co_flags & CO_VARARGS: varargs = co.co_varnames[nargs] nargs = nargs + 1 varkw = None if co.co_flags & CO_VARKEYWORDS: varkw = co.co_varnames[nargs] return Arguments(args + kwonlyargs, varargs, varkw) FullArgSpec = namedtuple('FullArgSpec', 'args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations') def getfullargspec(func): """Get the names and default values of a callable object's parameters. A tuple of seven things is returned: (args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations). 'args' is a list of the parameter names. 'varargs' and 'varkw' are the names of the * and ** parameters or None. 'defaults' is an n-tuple of the default values of the last n parameters. 'kwonlyargs' is a list of keyword-only parameter names. 'kwonlydefaults' is a dictionary mapping names from kwonlyargs to defaults. 'annotations' is a dictionary mapping parameter names to annotations. Notable differences from inspect.signature(): - the "self" parameter is always reported, even for bound methods - wrapper chains defined by __wrapped__ *not* unwrapped automatically """ try: # Re: `skip_bound_arg=False` # # There is a notable difference in behaviour between getfullargspec # and Signature: the former always returns 'self' parameter for bound # methods, whereas the Signature always shows the actual calling # signature of the passed object. # # To simulate this behaviour, we "unbind" bound methods, to trick # inspect.signature to always return their first parameter ("self", # usually) # Re: `follow_wrapper_chains=False` # # getfullargspec() historically ignored __wrapped__ attributes, # so we ensure that remains the case in 3.3+ sig = _signature_from_callable(func, follow_wrapper_chains=False, skip_bound_arg=False, sigcls=Signature, eval_str=False) except Exception as ex: # Most of the times 'signature' will raise ValueError. # But, it can also raise AttributeError, and, maybe something # else. So to be fully backwards compatible, we catch all # possible exceptions here, and reraise a TypeError. raise TypeError('unsupported callable') from ex args = [] varargs = None varkw = None posonlyargs = [] kwonlyargs = [] annotations = {} defaults = () kwdefaults = {} if sig.return_annotation is not sig.empty: annotations['return'] = sig.return_annotation for param in sig.parameters.values(): kind = param.kind name = param.name if kind is _POSITIONAL_ONLY: posonlyargs.append(name) if param.default is not param.empty: defaults += (param.default,) elif kind is _POSITIONAL_OR_KEYWORD: args.append(name) if param.default is not param.empty: defaults += (param.default,) elif kind is _VAR_POSITIONAL: varargs = name elif kind is _KEYWORD_ONLY: kwonlyargs.append(name) if param.default is not param.empty: kwdefaults[name] = param.default elif kind is _VAR_KEYWORD: varkw = name if param.annotation is not param.empty: annotations[name] = param.annotation if not kwdefaults: # compatibility with 'func.__kwdefaults__' kwdefaults = None if not defaults: # compatibility with 'func.__defaults__' defaults = None return FullArgSpec(posonlyargs + args, varargs, varkw, defaults, kwonlyargs, kwdefaults, annotations) ArgInfo = namedtuple('ArgInfo', 'args varargs keywords locals') def getargvalues(frame): """Get information about arguments passed into a particular frame. A tuple of four things is returned: (args, varargs, varkw, locals). 'args' is a list of the argument names. 'varargs' and 'varkw' are the names of the * and ** arguments or None. 'locals' is the locals dictionary of the given frame.""" args, varargs, varkw = getargs(frame.f_code) return ArgInfo(args, varargs, varkw, frame.f_locals) def formatannotation(annotation, base_module=None): if getattr(annotation, '__module__', None) == 'typing': def repl(match): text = match.group() return text.removeprefix('typing.') return re.sub(r'[\w\.]+', repl, repr(annotation)) if isinstance(annotation, types.GenericAlias): return str(annotation) if isinstance(annotation, type): if annotation.__module__ in ('builtins', base_module): return annotation.__qualname__ return annotation.__module__+'.'+annotation.__qualname__ return repr(annotation) def formatannotationrelativeto(object): module = getattr(object, '__module__', None) def _formatannotation(annotation): return formatannotation(annotation, module) return _formatannotation def formatargvalues(args, varargs, varkw, locals, formatarg=str, formatvarargs=lambda name: '*' + name, formatvarkw=lambda name: '**' + name, formatvalue=lambda value: '=' + repr(value)): """Format an argument spec from the 4 values returned by getargvalues. The first four arguments are (args, varargs, varkw, locals). The next four arguments are the corresponding optional formatting functions that are called to turn names and values into strings. The ninth argument is an optional function to format the sequence of arguments.""" def convert(name, locals=locals, formatarg=formatarg, formatvalue=formatvalue): return formatarg(name) + formatvalue(locals[name]) specs = [] for i in range(len(args)): specs.append(convert(args[i])) if varargs: specs.append(formatvarargs(varargs) + formatvalue(locals[varargs])) if varkw: specs.append(formatvarkw(varkw) + formatvalue(locals[varkw])) return '(' + ', '.join(specs) + ')' def _missing_arguments(f_name, argnames, pos, values): names = [repr(name) for name in argnames if name not in values] missing = len(names) if missing == 1: s = names[0] elif missing == 2: s = "{} and {}".format(*names) else: tail = ", {} and {}".format(*names[-2:]) del names[-2:] s = ", ".join(names) + tail raise TypeError("%s() missing %i required %s argument%s: %s" % (f_name, missing, "positional" if pos else "keyword-only", "" if missing == 1 else "s", s)) def _too_many(f_name, args, kwonly, varargs, defcount, given, values): atleast = len(args) - defcount kwonly_given = len([arg for arg in kwonly if arg in values]) if varargs: plural = atleast != 1 sig = "at least %d" % (atleast,) elif defcount: plural = True sig = "from %d to %d" % (atleast, len(args)) else: plural = len(args) != 1 sig = str(len(args)) kwonly_sig = "" if kwonly_given: msg = " positional argument%s (and %d keyword-only argument%s)" kwonly_sig = (msg % ("s" if given != 1 else "", kwonly_given, "s" if kwonly_given != 1 else "")) raise TypeError("%s() takes %s positional argument%s but %d%s %s given" % (f_name, sig, "s" if plural else "", given, kwonly_sig, "was" if given == 1 and not kwonly_given else "were")) def getcallargs(func, /, *positional, **named): """Get the mapping of arguments to values. A dict is returned, with keys the function argument names (including the names of the * and ** arguments, if any), and values the respective bound values from 'positional' and 'named'.""" spec = getfullargspec(func) args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, ann = spec f_name = func.__name__ arg2value = {} if ismethod(func) and func.__self__ is not None: # implicit 'self' (or 'cls' for classmethods) argument positional = (func.__self__,) + positional num_pos = len(positional) num_args = len(args) num_defaults = len(defaults) if defaults else 0 n = min(num_pos, num_args) for i in range(n): arg2value[args[i]] = positional[i] if varargs: arg2value[varargs] = tuple(positional[n:]) possible_kwargs = set(args + kwonlyargs) if varkw: arg2value[varkw] = {} for kw, value in named.items(): if kw not in possible_kwargs: if not varkw: raise TypeError("%s() got an unexpected keyword argument %r" % (f_name, kw)) arg2value[varkw][kw] = value continue if kw in arg2value: raise TypeError("%s() got multiple values for argument %r" % (f_name, kw)) arg2value[kw] = value if num_pos > num_args and not varargs: _too_many(f_name, args, kwonlyargs, varargs, num_defaults, num_pos, arg2value) if num_pos < num_args: req = args[:num_args - num_defaults] for arg in req: if arg not in arg2value: _missing_arguments(f_name, req, True, arg2value) for i, arg in enumerate(args[num_args - num_defaults:]): if arg not in arg2value: arg2value[arg] = defaults[i] missing = 0 for kwarg in kwonlyargs: if kwarg not in arg2value: if kwonlydefaults and kwarg in kwonlydefaults: arg2value[kwarg] = kwonlydefaults[kwarg] else: missing += 1 if missing: _missing_arguments(f_name, kwonlyargs, False, arg2value) return arg2value ClosureVars = namedtuple('ClosureVars', 'nonlocals globals builtins unbound') def getclosurevars(func): """ Get the mapping of free variables to their current values. Returns a named tuple of dicts mapping the current nonlocal, global and builtin references as seen by the body of the function. A final set of unbound names that could not be resolved is also provided. """ if ismethod(func): func = func.__func__ if not isfunction(func): raise TypeError("{!r} is not a Python function".format(func)) code = func.__code__ # Nonlocal references are named in co_freevars and resolved # by looking them up in __closure__ by positional index if func.__closure__ is None: nonlocal_vars = {} else: nonlocal_vars = { var : cell.cell_contents for var, cell in zip(code.co_freevars, func.__closure__) } # Global and builtin references are named in co_names and resolved # by looking them up in __globals__ or __builtins__ global_ns = func.__globals__ builtin_ns = global_ns.get("__builtins__", builtins.__dict__) if ismodule(builtin_ns): builtin_ns = builtin_ns.__dict__ global_vars = {} builtin_vars = {} unbound_names = set() for name in code.co_names: if name in ("None", "True", "False"): # Because these used to be builtins instead of keywords, they # may still show up as name references. We ignore them. continue try: global_vars[name] = global_ns[name] except KeyError: try: builtin_vars[name] = builtin_ns[name] except KeyError: unbound_names.add(name) return ClosureVars(nonlocal_vars, global_vars, builtin_vars, unbound_names) # -------------------------------------------------- stack frame extraction _Traceback = namedtuple('_Traceback', 'filename lineno function code_context index') class Traceback(_Traceback): def __new__(cls, filename, lineno, function, code_context, index, *, positions=None): instance = super().__new__(cls, filename, lineno, function, code_context, index) instance.positions = positions return instance def __repr__(self): return ('Traceback(filename={!r}, lineno={!r}, function={!r}, ' 'code_context={!r}, index={!r}, positions={!r})'.format( self.filename, self.lineno, self.function, self.code_context, self.index, self.positions)) def _get_code_position_from_tb(tb): code, instruction_index = tb.tb_frame.f_code, tb.tb_lasti return _get_code_position(code, instruction_index) def _get_code_position(code, instruction_index): if instruction_index < 0: return (None, None, None, None) positions_gen = code.co_positions() # The nth entry in code.co_positions() corresponds to instruction (2*n)th since Python 3.10+ return next(itertools.islice(positions_gen, instruction_index // 2, None)) def getframeinfo(frame, context=1): """Get information about a frame or traceback object. A tuple of five things is returned: the filename, the line number of the current line, the function name, a list of lines of context from the source code, and the index of the current line within that list. The optional second argument specifies the number of lines of context to return, which are centered around the current line.""" if istraceback(frame): positions = _get_code_position_from_tb(frame) lineno = frame.tb_lineno frame = frame.tb_frame else: lineno = frame.f_lineno positions = _get_code_position(frame.f_code, frame.f_lasti) if positions[0] is None: frame, *positions = (frame, lineno, *positions[1:]) else: frame, *positions = (frame, *positions) lineno = positions[0] if not isframe(frame): raise TypeError('{!r} is not a frame or traceback object'.format(frame)) filename = getsourcefile(frame) or getfile(frame) if context > 0: start = lineno - 1 - context//2 try: lines, lnum = findsource(frame) except OSError: lines = index = None else: start = max(0, min(start, len(lines) - context)) lines = lines[start:start+context] index = lineno - 1 - start else: lines = index = None return Traceback(filename, lineno, frame.f_code.co_name, lines, index, positions=dis.Positions(*positions)) def getlineno(frame): """Get the line number from a frame object, allowing for optimization.""" # FrameType.f_lineno is now a descriptor that grovels co_lnotab return frame.f_lineno _FrameInfo = namedtuple('_FrameInfo', ('frame',) + Traceback._fields) class FrameInfo(_FrameInfo): def __new__(cls, frame, filename, lineno, function, code_context, index, *, positions=None): instance = super().__new__(cls, frame, filename, lineno, function, code_context, index) instance.positions = positions return instance def __repr__(self): return ('FrameInfo(frame={!r}, filename={!r}, lineno={!r}, function={!r}, ' 'code_context={!r}, index={!r}, positions={!r})'.format( self.frame, self.filename, self.lineno, self.function, self.code_context, self.index, self.positions)) def getouterframes(frame, context=1): """Get a list of records for a frame and all higher (calling) frames. Each record contains a frame object, filename, line number, function name, a list of lines of context, and index within the context.""" framelist = [] while frame: traceback_info = getframeinfo(frame, context) frameinfo = (frame,) + traceback_info framelist.append(FrameInfo(*frameinfo, positions=traceback_info.positions)) frame = frame.f_back return framelist def getinnerframes(tb, context=1): """Get a list of records for a traceback's frame and all lower frames. Each record contains a frame object, filename, line number, function name, a list of lines of context, and index within the context.""" framelist = [] while tb: traceback_info = getframeinfo(tb, context) frameinfo = (tb.tb_frame,) + traceback_info framelist.append(FrameInfo(*frameinfo, positions=traceback_info.positions)) tb = tb.tb_next return framelist def currentframe(): """Return the frame of the caller or None if this is not possible.""" return sys._getframe(1) if hasattr(sys, "_getframe") else None def stack(context=1): """Return a list of records for the stack above the caller's frame.""" return getouterframes(sys._getframe(1), context) def trace(context=1): """Return a list of records for the stack below the current exception.""" exc = sys.exception() tb = None if exc is None else exc.__traceback__ return getinnerframes(tb, context) # ------------------------------------------------ static version of getattr _sentinel = object() _static_getmro = type.__dict__['__mro__'].__get__ _get_dunder_dict_of_class = type.__dict__["__dict__"].__get__ def _check_instance(obj, attr): instance_dict = {} try: instance_dict = object.__getattribute__(obj, "__dict__") except AttributeError: pass return dict.get(instance_dict, attr, _sentinel) def _check_class(klass, attr): for entry in _static_getmro(klass): if _shadowed_dict(type(entry)) is _sentinel and attr in entry.__dict__: return entry.__dict__[attr] return _sentinel @functools.lru_cache() def _shadowed_dict_from_weakref_mro_tuple(*weakref_mro): for weakref_entry in weakref_mro: # Normally we'd have to check whether the result of weakref_entry() # is None here, in case the object the weakref is pointing to has died. # In this specific case, however, we know that the only caller of this # function is `_shadowed_dict()`, and that therefore this weakref is # guaranteed to point to an object that is still alive. entry = weakref_entry() dunder_dict = _get_dunder_dict_of_class(entry) if '__dict__' in dunder_dict: class_dict = dunder_dict['__dict__'] if not (type(class_dict) is types.GetSetDescriptorType and class_dict.__name__ == "__dict__" and class_dict.__objclass__ is entry): return class_dict return _sentinel def _shadowed_dict(klass): # gh-118013: the inner function here is decorated with lru_cache for # performance reasons, *but* make sure not to pass strong references # to the items in the mro. Doing so can lead to unexpected memory # consumption in cases where classes are dynamically created and # destroyed, and the dynamically created classes happen to be the only # objects that hold strong references to other objects that take up a # significant amount of memory. return _shadowed_dict_from_weakref_mro_tuple( *[make_weakref(entry) for entry in _static_getmro(klass)] ) def getattr_static(obj, attr, default=_sentinel): """Retrieve attributes without triggering dynamic lookup via the descriptor protocol, __getattr__ or __getattribute__. Note: this function may not be able to retrieve all attributes that getattr can fetch (like dynamically created attributes) and may find attributes that getattr can't (like descriptors that raise AttributeError). It can also return descriptor objects instead of instance members in some cases. See the documentation for details. """ instance_result = _sentinel objtype = type(obj) if type not in _static_getmro(objtype): klass = objtype dict_attr = _shadowed_dict(klass) if (dict_attr is _sentinel or type(dict_attr) is types.MemberDescriptorType): instance_result = _check_instance(obj, attr) else: klass = obj klass_result = _check_class(klass, attr) if instance_result is not _sentinel and klass_result is not _sentinel: if _check_class(type(klass_result), "__get__") is not _sentinel and ( _check_class(type(klass_result), "__set__") is not _sentinel or _check_class(type(klass_result), "__delete__") is not _sentinel ): return klass_result if instance_result is not _sentinel: return instance_result if klass_result is not _sentinel: return klass_result if obj is klass: # for types we check the metaclass too for entry in _static_getmro(type(klass)): if ( _shadowed_dict(type(entry)) is _sentinel and attr in entry.__dict__ ): return entry.__dict__[attr] if default is not _sentinel: return default raise AttributeError(attr) # ------------------------------------------------ generator introspection GEN_CREATED = 'GEN_CREATED' GEN_RUNNING = 'GEN_RUNNING' GEN_SUSPENDED = 'GEN_SUSPENDED' GEN_CLOSED = 'GEN_CLOSED' def getgeneratorstate(generator): """Get current state of a generator-iterator. Possible states are: GEN_CREATED: Waiting to start execution. GEN_RUNNING: Currently being executed by the interpreter. GEN_SUSPENDED: Currently suspended at a yield expression. GEN_CLOSED: Execution has completed. """ if generator.gi_running: return GEN_RUNNING if generator.gi_suspended: return GEN_SUSPENDED if generator.gi_frame is None: return GEN_CLOSED return GEN_CREATED def getgeneratorlocals(generator): """ Get the mapping of generator local variables to their current values. A dict is returned, with the keys the local variable names and values the bound values.""" if not isgenerator(generator): raise TypeError("{!r} is not a Python generator".format(generator)) frame = getattr(generator, "gi_frame", None) if frame is not None: return generator.gi_frame.f_locals else: return {} # ------------------------------------------------ coroutine introspection CORO_CREATED = 'CORO_CREATED' CORO_RUNNING = 'CORO_RUNNING' CORO_SUSPENDED = 'CORO_SUSPENDED' CORO_CLOSED = 'CORO_CLOSED' def getcoroutinestate(coroutine): """Get current state of a coroutine object. Possible states are: CORO_CREATED: Waiting to start execution. CORO_RUNNING: Currently being executed by the interpreter. CORO_SUSPENDED: Currently suspended at an await expression. CORO_CLOSED: Execution has completed. """ if coroutine.cr_running: return CORO_RUNNING if coroutine.cr_suspended: return CORO_SUSPENDED if coroutine.cr_frame is None: return CORO_CLOSED return CORO_CREATED def getcoroutinelocals(coroutine): """ Get the mapping of coroutine local variables to their current values. A dict is returned, with the keys the local variable names and values the bound values.""" frame = getattr(coroutine, "cr_frame", None) if frame is not None: return frame.f_locals else: return {} # ----------------------------------- asynchronous generator introspection AGEN_CREATED = 'AGEN_CREATED' AGEN_RUNNING = 'AGEN_RUNNING' AGEN_SUSPENDED = 'AGEN_SUSPENDED' AGEN_CLOSED = 'AGEN_CLOSED' def getasyncgenstate(agen): """Get current state of an asynchronous generator object. Possible states are: AGEN_CREATED: Waiting to start execution. AGEN_RUNNING: Currently being executed by the interpreter. AGEN_SUSPENDED: Currently suspended at a yield expression. AGEN_CLOSED: Execution has completed. """ if agen.ag_running: return AGEN_RUNNING if agen.ag_suspended: return AGEN_SUSPENDED if agen.ag_frame is None: return AGEN_CLOSED return AGEN_CREATED def getasyncgenlocals(agen): """ Get the mapping of asynchronous generator local variables to their current values. A dict is returned, with the keys the local variable names and values the bound values.""" if not isasyncgen(agen): raise TypeError(f"{agen!r} is not a Python async generator") frame = getattr(agen, "ag_frame", None) if frame is not None: return agen.ag_frame.f_locals else: return {} ############################################################################### ### Function Signature Object (PEP 362) ############################################################################### _NonUserDefinedCallables = (types.WrapperDescriptorType, types.MethodWrapperType, types.ClassMethodDescriptorType, types.BuiltinFunctionType) def _signature_get_user_defined_method(cls, method_name): """Private helper. Checks if ``cls`` has an attribute named ``method_name`` and returns it only if it is a pure python function. """ if method_name == '__new__': meth = getattr(cls, method_name, None) else: meth = getattr_static(cls, method_name, None) if meth is None or isinstance(meth, _NonUserDefinedCallables): # Once '__signature__' will be added to 'C'-level # callables, this check won't be necessary return None if method_name != '__new__': meth = _descriptor_get(meth, cls) return meth def _signature_get_partial(wrapped_sig, partial, extra_args=()): """Private helper to calculate how 'wrapped_sig' signature will look like after applying a 'functools.partial' object (or alike) on it. """ old_params = wrapped_sig.parameters new_params = OrderedDict(old_params.items()) partial_args = partial.args or () partial_keywords = partial.keywords or {} if extra_args: partial_args = extra_args + partial_args try: ba = wrapped_sig.bind_partial(*partial_args, **partial_keywords) except TypeError as ex: msg = 'partial object {!r} has incorrect arguments'.format(partial) raise ValueError(msg) from ex transform_to_kwonly = False for param_name, param in old_params.items(): try: arg_value = ba.arguments[param_name] except KeyError: pass else: if param.kind is _POSITIONAL_ONLY: # If positional-only parameter is bound by partial, # it effectively disappears from the signature new_params.pop(param_name) continue if param.kind is _POSITIONAL_OR_KEYWORD: if param_name in partial_keywords: # This means that this parameter, and all parameters # after it should be keyword-only (and var-positional # should be removed). Here's why. Consider the following # function: # foo(a, b, *args, c): # pass # # "partial(foo, a='spam')" will have the following # signature: "(*, a='spam', b, c)". Because attempting # to call that partial with "(10, 20)" arguments will # raise a TypeError, saying that "a" argument received # multiple values. transform_to_kwonly = True # Set the new default value new_params[param_name] = param.replace(default=arg_value) else: # was passed as a positional argument new_params.pop(param.name) continue if param.kind is _KEYWORD_ONLY: # Set the new default value new_params[param_name] = param.replace(default=arg_value) if transform_to_kwonly: assert param.kind is not _POSITIONAL_ONLY if param.kind is _POSITIONAL_OR_KEYWORD: new_param = new_params[param_name].replace(kind=_KEYWORD_ONLY) new_params[param_name] = new_param new_params.move_to_end(param_name) elif param.kind in (_KEYWORD_ONLY, _VAR_KEYWORD): new_params.move_to_end(param_name) elif param.kind is _VAR_POSITIONAL: new_params.pop(param.name) return wrapped_sig.replace(parameters=new_params.values()) def _signature_bound_method(sig): """Private helper to transform signatures for unbound functions to bound methods. """ params = tuple(sig.parameters.values()) if not params or params[0].kind in (_VAR_KEYWORD, _KEYWORD_ONLY): raise ValueError('invalid method signature') kind = params[0].kind if kind in (_POSITIONAL_OR_KEYWORD, _POSITIONAL_ONLY): # Drop first parameter: # '(p1, p2[, ...])' -> '(p2[, ...])' params = params[1:] else: if kind is not _VAR_POSITIONAL: # Unless we add a new parameter type we never # get here raise ValueError('invalid argument type') # It's a var-positional parameter. # Do nothing. '(*args[, ...])' -> '(*args[, ...])' return sig.replace(parameters=params) def _signature_is_builtin(obj): """Private helper to test if `obj` is a callable that might support Argument Clinic's __text_signature__ protocol. """ return (isbuiltin(obj) or ismethoddescriptor(obj) or isinstance(obj, _NonUserDefinedCallables) or # Can't test 'isinstance(type)' here, as it would # also be True for regular python classes. # Can't use the `in` operator here, as it would # invoke the custom __eq__ method. obj is type or obj is object) def _signature_is_functionlike(obj): """Private helper to test if `obj` is a duck type of FunctionType. A good example of such objects are functions compiled with Cython, which have all attributes that a pure Python function would have, but have their code statically compiled. """ if not callable(obj) or isclass(obj): # All function-like objects are obviously callables, # and not classes. return False name = getattr(obj, '__name__', None) code = getattr(obj, '__code__', None) defaults = getattr(obj, '__defaults__', _void) # Important to use _void ... kwdefaults = getattr(obj, '__kwdefaults__', _void) # ... and not None here annotations = getattr(obj, '__annotations__', None) return (isinstance(code, types.CodeType) and isinstance(name, str) and (defaults is None or isinstance(defaults, tuple)) and (kwdefaults is None or isinstance(kwdefaults, dict)) and (isinstance(annotations, (dict)) or annotations is None) ) def _signature_strip_non_python_syntax(signature): """ Private helper function. Takes a signature in Argument Clinic's extended signature format. Returns a tuple of two things: * that signature re-rendered in standard Python syntax, and * the index of the "self" parameter (generally 0), or None if the function does not have a "self" parameter. """ if not signature: return signature, None self_parameter = None lines = [l.encode('ascii') for l in signature.split('\n') if l] generator = iter(lines).__next__ token_stream = tokenize.tokenize(generator) text = [] add = text.append current_parameter = 0 OP = token.OP ERRORTOKEN = token.ERRORTOKEN # token stream always starts with ENCODING token, skip it t = next(token_stream) assert t.type == tokenize.ENCODING for t in token_stream: type, string = t.type, t.string if type == OP: if string == ',': current_parameter += 1 if (type == OP) and (string == '$'): assert self_parameter is None self_parameter = current_parameter continue add(string) if (string == ','): add(' ') clean_signature = ''.join(text).strip().replace("\n", "") return clean_signature, self_parameter def _signature_fromstr(cls, obj, s, skip_bound_arg=True): """Private helper to parse content of '__text_signature__' and return a Signature based on it. """ Parameter = cls._parameter_cls clean_signature, self_parameter = _signature_strip_non_python_syntax(s) program = "def foo" + clean_signature + ": pass" try: module = ast.parse(program) except SyntaxError: module = None if not isinstance(module, ast.Module): raise ValueError("{!r} builtin has invalid signature".format(obj)) f = module.body[0] parameters = [] empty = Parameter.empty module = None module_dict = {} module_name = getattr(obj, '__module__', None) if module_name: module = sys.modules.get(module_name, None) if module: module_dict = module.__dict__ sys_module_dict = sys.modules.copy() def parse_name(node): assert isinstance(node, ast.arg) if node.annotation is not None: raise ValueError("Annotations are not currently supported") return node.arg def wrap_value(s): try: value = eval(s, module_dict) except NameError: try: value = eval(s, sys_module_dict) except NameError: raise ValueError if isinstance(value, (str, int, float, bytes, bool, type(None))): return ast.Constant(value) raise ValueError class RewriteSymbolics(ast.NodeTransformer): def visit_Attribute(self, node): a = [] n = node while isinstance(n, ast.Attribute): a.append(n.attr) n = n.value if not isinstance(n, ast.Name): raise ValueError a.append(n.id) value = ".".join(reversed(a)) return wrap_value(value) def visit_Name(self, node): if not isinstance(node.ctx, ast.Load): raise ValueError() return wrap_value(node.id) def visit_BinOp(self, node): # Support constant folding of a couple simple binary operations # commonly used to define default values in text signatures left = self.visit(node.left) right = self.visit(node.right) if not isinstance(left, ast.Constant) or not isinstance(right, ast.Constant): raise ValueError if isinstance(node.op, ast.Add): return ast.Constant(left.value + right.value) elif isinstance(node.op, ast.Sub): return ast.Constant(left.value - right.value) elif isinstance(node.op, ast.BitOr): return ast.Constant(left.value | right.value) raise ValueError def p(name_node, default_node, default=empty): name = parse_name(name_node) if default_node and default_node is not _empty: try: default_node = RewriteSymbolics().visit(default_node) default = ast.literal_eval(default_node) except ValueError: raise ValueError("{!r} builtin has invalid signature".format(obj)) from None parameters.append(Parameter(name, kind, default=default, annotation=empty)) # non-keyword-only parameters total_non_kw_args = len(f.args.posonlyargs) + len(f.args.args) required_non_kw_args = total_non_kw_args - len(f.args.defaults) defaults = itertools.chain(itertools.repeat(None, required_non_kw_args), f.args.defaults) kind = Parameter.POSITIONAL_ONLY for (name, default) in zip(f.args.posonlyargs, defaults): p(name, default) kind = Parameter.POSITIONAL_OR_KEYWORD for (name, default) in zip(f.args.args, defaults): p(name, default) # *args if f.args.vararg: kind = Parameter.VAR_POSITIONAL p(f.args.vararg, empty) # keyword-only arguments kind = Parameter.KEYWORD_ONLY for name, default in zip(f.args.kwonlyargs, f.args.kw_defaults): p(name, default) # **kwargs if f.args.kwarg: kind = Parameter.VAR_KEYWORD p(f.args.kwarg, empty) if self_parameter is not None: # Possibly strip the bound argument: # - We *always* strip first bound argument if # it is a module. # - We don't strip first bound argument if # skip_bound_arg is False. assert parameters _self = getattr(obj, '__self__', None) self_isbound = _self is not None self_ismodule = ismodule(_self) if self_isbound and (self_ismodule or skip_bound_arg): parameters.pop(0) else: # for builtins, self parameter is always positional-only! p = parameters[0].replace(kind=Parameter.POSITIONAL_ONLY) parameters[0] = p return cls(parameters, return_annotation=cls.empty) def _signature_from_builtin(cls, func, skip_bound_arg=True): """Private helper function to get signature for builtin callables. """ if not _signature_is_builtin(func): raise TypeError("{!r} is not a Python builtin " "function".format(func)) s = getattr(func, "__text_signature__", None) if not s: raise ValueError("no signature found for builtin {!r}".format(func)) return _signature_fromstr(cls, func, s, skip_bound_arg) def _signature_from_function(cls, func, skip_bound_arg=True, globals=None, locals=None, eval_str=False): """Private helper: constructs Signature for the given python function.""" is_duck_function = False if not isfunction(func): if _signature_is_functionlike(func): is_duck_function = True else: # If it's not a pure Python function, and not a duck type # of pure function: raise TypeError('{!r} is not a Python function'.format(func)) s = getattr(func, "__text_signature__", None) if s: return _signature_fromstr(cls, func, s, skip_bound_arg) Parameter = cls._parameter_cls # Parameter information. func_code = func.__code__ pos_count = func_code.co_argcount arg_names = func_code.co_varnames posonly_count = func_code.co_posonlyargcount positional = arg_names[:pos_count] keyword_only_count = func_code.co_kwonlyargcount keyword_only = arg_names[pos_count:pos_count + keyword_only_count] annotations = get_annotations(func, globals=globals, locals=locals, eval_str=eval_str) defaults = func.__defaults__ kwdefaults = func.__kwdefaults__ if defaults: pos_default_count = len(defaults) else: pos_default_count = 0 parameters = [] non_default_count = pos_count - pos_default_count posonly_left = posonly_count # Non-keyword-only parameters w/o defaults. for name in positional[:non_default_count]: kind = _POSITIONAL_ONLY if posonly_left else _POSITIONAL_OR_KEYWORD annotation = annotations.get(name, _empty) parameters.append(Parameter(name, annotation=annotation, kind=kind)) if posonly_left: posonly_left -= 1 # ... w/ defaults. for offset, name in enumerate(positional[non_default_count:]): kind = _POSITIONAL_ONLY if posonly_left else _POSITIONAL_OR_KEYWORD annotation = annotations.get(name, _empty) parameters.append(Parameter(name, annotation=annotation, kind=kind, default=defaults[offset])) if posonly_left: posonly_left -= 1 # *args if func_code.co_flags & CO_VARARGS: name = arg_names[pos_count + keyword_only_count] annotation = annotations.get(name, _empty) parameters.append(Parameter(name, annotation=annotation, kind=_VAR_POSITIONAL)) # Keyword-only parameters. for name in keyword_only: default = _empty if kwdefaults is not None: default = kwdefaults.get(name, _empty) annotation = annotations.get(name, _empty) parameters.append(Parameter(name, annotation=annotation, kind=_KEYWORD_ONLY, default=default)) # **kwargs if func_code.co_flags & CO_VARKEYWORDS: index = pos_count + keyword_only_count if func_code.co_flags & CO_VARARGS: index += 1 name = arg_names[index] annotation = annotations.get(name, _empty) parameters.append(Parameter(name, annotation=annotation, kind=_VAR_KEYWORD)) # Is 'func' is a pure Python function - don't validate the # parameters list (for correct order and defaults), it should be OK. return cls(parameters, return_annotation=annotations.get('return', _empty), __validate_parameters__=is_duck_function) def _descriptor_get(descriptor, obj): if isclass(descriptor): return descriptor get = getattr(type(descriptor), '__get__', _sentinel) if get is _sentinel: return descriptor return get(descriptor, obj, type(obj)) def _signature_from_callable(obj, *, follow_wrapper_chains=True, skip_bound_arg=True, globals=None, locals=None, eval_str=False, sigcls): """Private helper function to get signature for arbitrary callable objects. """ _get_signature_of = functools.partial(_signature_from_callable, follow_wrapper_chains=follow_wrapper_chains, skip_bound_arg=skip_bound_arg, globals=globals, locals=locals, sigcls=sigcls, eval_str=eval_str) if not callable(obj): raise TypeError('{!r} is not a callable object'.format(obj)) if isinstance(obj, types.MethodType): # In this case we skip the first parameter of the underlying # function (usually `self` or `cls`). sig = _get_signature_of(obj.__func__) if skip_bound_arg: return _signature_bound_method(sig) else: return sig # Was this function wrapped by a decorator? if follow_wrapper_chains: # Unwrap until we find an explicit signature or a MethodType (which will be # handled explicitly below). obj = unwrap(obj, stop=(lambda f: hasattr(f, "__signature__") or isinstance(f, types.MethodType))) if isinstance(obj, types.MethodType): # If the unwrapped object is a *method*, we might want to # skip its first parameter (self). # See test_signature_wrapped_bound_method for details. return _get_signature_of(obj) try: sig = obj.__signature__ except AttributeError: pass else: if sig is not None: # since __text_signature__ is not writable on classes, __signature__ # may contain text (or be a callable that returns text); # if so, convert it o_sig = sig if not isinstance(sig, (Signature, str)) and callable(sig): sig = sig() if isinstance(sig, str): sig = _signature_fromstr(sigcls, obj, sig) if not isinstance(sig, Signature): raise TypeError( 'unexpected object {!r} in __signature__ ' 'attribute'.format(o_sig)) return sig try: partialmethod = obj._partialmethod except AttributeError: pass else: if isinstance(partialmethod, functools.partialmethod): # Unbound partialmethod (see functools.partialmethod) # This means, that we need to calculate the signature # as if it's a regular partial object, but taking into # account that the first positional argument # (usually `self`, or `cls`) will not be passed # automatically (as for boundmethods) wrapped_sig = _get_signature_of(partialmethod.func) sig = _signature_get_partial(wrapped_sig, partialmethod, (None,)) first_wrapped_param = tuple(wrapped_sig.parameters.values())[0] if first_wrapped_param.kind is Parameter.VAR_POSITIONAL: # First argument of the wrapped callable is `*args`, as in # `partialmethod(lambda *args)`. return sig else: sig_params = tuple(sig.parameters.values()) assert (not sig_params or first_wrapped_param is not sig_params[0]) new_params = (first_wrapped_param,) + sig_params return sig.replace(parameters=new_params) if isfunction(obj) or _signature_is_functionlike(obj): # If it's a pure Python function, or an object that is duck type # of a Python function (Cython functions, for instance), then: return _signature_from_function(sigcls, obj, skip_bound_arg=skip_bound_arg, globals=globals, locals=locals, eval_str=eval_str) if _signature_is_builtin(obj): return _signature_from_builtin(sigcls, obj, skip_bound_arg=skip_bound_arg) if isinstance(obj, functools.partial): wrapped_sig = _get_signature_of(obj.func) return _signature_get_partial(wrapped_sig, obj) if isinstance(obj, type): # obj is a class or a metaclass # First, let's see if it has an overloaded __call__ defined # in its metaclass call = _signature_get_user_defined_method(type(obj), '__call__') if call is not None: return _get_signature_of(call) new = _signature_get_user_defined_method(obj, '__new__') init = _signature_get_user_defined_method(obj, '__init__') # Go through the MRO and see if any class has user-defined # pure Python __new__ or __init__ method for base in obj.__mro__: # Now we check if the 'obj' class has an own '__new__' method if new is not None and '__new__' in base.__dict__: sig = _get_signature_of(new) if skip_bound_arg: sig = _signature_bound_method(sig) return sig # or an own '__init__' method elif init is not None and '__init__' in base.__dict__: return _get_signature_of(init) # At this point we know, that `obj` is a class, with no user- # defined '__init__', '__new__', or class-level '__call__' for base in obj.__mro__[:-1]: # Since '__text_signature__' is implemented as a # descriptor that extracts text signature from the # class docstring, if 'obj' is derived from a builtin # class, its own '__text_signature__' may be 'None'. # Therefore, we go through the MRO (except the last # class in there, which is 'object') to find the first # class with non-empty text signature. try: text_sig = base.__text_signature__ except AttributeError: pass else: if text_sig: # If 'base' class has a __text_signature__ attribute: # return a signature based on it return _signature_fromstr(sigcls, base, text_sig) # No '__text_signature__' was found for the 'obj' class. # Last option is to check if its '__init__' is # object.__init__ or type.__init__. if type not in obj.__mro__: # We have a class (not metaclass), but no user-defined # __init__ or __new__ for it if (obj.__init__ is object.__init__ and obj.__new__ is object.__new__): # Return a signature of 'object' builtin. return sigcls.from_callable(object) else: raise ValueError( 'no signature found for builtin type {!r}'.format(obj)) else: # An object with __call__ call = getattr_static(type(obj), '__call__', None) if call is not None: call = _descriptor_get(call, obj) return _get_signature_of(call) raise ValueError('callable {!r} is not supported by signature'.format(obj)) class _void: """A private marker - used in Parameter & Signature.""" class _empty: """Marker object for Signature.empty and Parameter.empty.""" class _ParameterKind(enum.IntEnum): POSITIONAL_ONLY = 'positional-only' POSITIONAL_OR_KEYWORD = 'positional or keyword' VAR_POSITIONAL = 'variadic positional' KEYWORD_ONLY = 'keyword-only' VAR_KEYWORD = 'variadic keyword' def __new__(cls, description): value = len(cls.__members__) member = int.__new__(cls, value) member._value_ = value member.description = description return member def __str__(self): return self.name _POSITIONAL_ONLY = _ParameterKind.POSITIONAL_ONLY _POSITIONAL_OR_KEYWORD = _ParameterKind.POSITIONAL_OR_KEYWORD _VAR_POSITIONAL = _ParameterKind.VAR_POSITIONAL _KEYWORD_ONLY = _ParameterKind.KEYWORD_ONLY _VAR_KEYWORD = _ParameterKind.VAR_KEYWORD class Parameter: """Represents a parameter in a function signature. Has the following public attributes: * name : str The name of the parameter as a string. * default : object The default value for the parameter if specified. If the parameter has no default value, this attribute is set to `Parameter.empty`. * annotation The annotation for the parameter if specified. If the parameter has no annotation, this attribute is set to `Parameter.empty`. * kind : str Describes how argument values are bound to the parameter. Possible values: `Parameter.POSITIONAL_ONLY`, `Parameter.POSITIONAL_OR_KEYWORD`, `Parameter.VAR_POSITIONAL`, `Parameter.KEYWORD_ONLY`, `Parameter.VAR_KEYWORD`. """ __slots__ = ('_name', '_kind', '_default', '_annotation') POSITIONAL_ONLY = _POSITIONAL_ONLY POSITIONAL_OR_KEYWORD = _POSITIONAL_OR_KEYWORD VAR_POSITIONAL = _VAR_POSITIONAL KEYWORD_ONLY = _KEYWORD_ONLY VAR_KEYWORD = _VAR_KEYWORD empty = _empty def __init__(self, name, kind, *, default=_empty, annotation=_empty): try: self._kind = _ParameterKind(kind) except ValueError: raise ValueError(f'value {kind!r} is not a valid Parameter.kind') if default is not _empty: if self._kind in (_VAR_POSITIONAL, _VAR_KEYWORD): msg = '{} parameters cannot have default values' msg = msg.format(self._kind.description) raise ValueError(msg) self._default = default self._annotation = annotation if name is _empty: raise ValueError('name is a required attribute for Parameter') if not isinstance(name, str): msg = 'name must be a str, not a {}'.format(type(name).__name__) raise TypeError(msg) if name[0] == '.' and name[1:].isdigit(): # These are implicit arguments generated by comprehensions. In # order to provide a friendlier interface to users, we recast # their name as "implicitN" and treat them as positional-only. # See issue 19611. if self._kind != _POSITIONAL_OR_KEYWORD: msg = ( 'implicit arguments must be passed as ' 'positional or keyword arguments, not {}' ) msg = msg.format(self._kind.description) raise ValueError(msg) self._kind = _POSITIONAL_ONLY name = 'implicit{}'.format(name[1:]) # It's possible for C functions to have a positional-only parameter # where the name is a keyword, so for compatibility we'll allow it. is_keyword = iskeyword(name) and self._kind is not _POSITIONAL_ONLY if is_keyword or not name.isidentifier(): raise ValueError('{!r} is not a valid parameter name'.format(name)) self._name = name def __reduce__(self): return (type(self), (self._name, self._kind), {'_default': self._default, '_annotation': self._annotation}) def __setstate__(self, state): self._default = state['_default'] self._annotation = state['_annotation'] @property def name(self): return self._name @property def default(self): return self._default @property def annotation(self): return self._annotation @property def kind(self): return self._kind def replace(self, *, name=_void, kind=_void, annotation=_void, default=_void): """Creates a customized copy of the Parameter.""" if name is _void: name = self._name if kind is _void: kind = self._kind if annotation is _void: annotation = self._annotation if default is _void: default = self._default return type(self)(name, kind, default=default, annotation=annotation) def __str__(self): kind = self.kind formatted = self._name # Add annotation and default value if self._annotation is not _empty: formatted = '{}: {}'.format(formatted, formatannotation(self._annotation)) if self._default is not _empty: if self._annotation is not _empty: formatted = '{} = {}'.format(formatted, repr(self._default)) else: formatted = '{}={}'.format(formatted, repr(self._default)) if kind == _VAR_POSITIONAL: formatted = '*' + formatted elif kind == _VAR_KEYWORD: formatted = '**' + formatted return formatted def __repr__(self): return '<{} "{}">'.format(self.__class__.__name__, self) def __hash__(self): return hash((self._name, self._kind, self._annotation, self._default)) def __eq__(self, other): if self is other: return True if not isinstance(other, Parameter): return NotImplemented return (self._name == other._name and self._kind == other._kind and self._default == other._default and self._annotation == other._annotation) class BoundArguments: """Result of `Signature.bind` call. Holds the mapping of arguments to the function's parameters. Has the following public attributes: * arguments : dict An ordered mutable mapping of parameters' names to arguments' values. Does not contain arguments' default values. * signature : Signature The Signature object that created this instance. * args : tuple Tuple of positional arguments values. * kwargs : dict Dict of keyword arguments values. """ __slots__ = ('arguments', '_signature', '__weakref__') def __init__(self, signature, arguments): self.arguments = arguments self._signature = signature @property def signature(self): return self._signature @property def args(self): args = [] for param_name, param in self._signature.parameters.items(): if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY): break try: arg = self.arguments[param_name] except KeyError: # We're done here. Other arguments # will be mapped in 'BoundArguments.kwargs' break else: if param.kind == _VAR_POSITIONAL: # *args args.extend(arg) else: # plain argument args.append(arg) return tuple(args) @property def kwargs(self): kwargs = {} kwargs_started = False for param_name, param in self._signature.parameters.items(): if not kwargs_started: if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY): kwargs_started = True else: if param_name not in self.arguments: kwargs_started = True continue if not kwargs_started: continue try: arg = self.arguments[param_name] except KeyError: pass else: if param.kind == _VAR_KEYWORD: # **kwargs kwargs.update(arg) else: # plain keyword argument kwargs[param_name] = arg return kwargs def apply_defaults(self): """Set default values for missing arguments. For variable-positional arguments (*args) the default is an empty tuple. For variable-keyword arguments (**kwargs) the default is an empty dict. """ arguments = self.arguments new_arguments = [] for name, param in self._signature.parameters.items(): try: new_arguments.append((name, arguments[name])) except KeyError: if param.default is not _empty: val = param.default elif param.kind is _VAR_POSITIONAL: val = () elif param.kind is _VAR_KEYWORD: val = {} else: # This BoundArguments was likely produced by # Signature.bind_partial(). continue new_arguments.append((name, val)) self.arguments = dict(new_arguments) def __eq__(self, other): if self is other: return True if not isinstance(other, BoundArguments): return NotImplemented return (self.signature == other.signature and self.arguments == other.arguments) def __setstate__(self, state): self._signature = state['_signature'] self.arguments = state['arguments'] def __getstate__(self): return {'_signature': self._signature, 'arguments': self.arguments} def __repr__(self): args = [] for arg, value in self.arguments.items(): args.append('{}={!r}'.format(arg, value)) return '<{} ({})>'.format(self.__class__.__name__, ', '.join(args)) class Signature: """A Signature object represents the overall signature of a function. It stores a Parameter object for each parameter accepted by the function, as well as information specific to the function itself. A Signature object has the following public attributes and methods: * parameters : OrderedDict An ordered mapping of parameters' names to the corresponding Parameter objects (keyword-only arguments are in the same order as listed in `code.co_varnames`). * return_annotation : object The annotation for the return type of the function if specified. If the function has no annotation for its return type, this attribute is set to `Signature.empty`. * bind(*args, **kwargs) -> BoundArguments Creates a mapping from positional and keyword arguments to parameters. * bind_partial(*args, **kwargs) -> BoundArguments Creates a partial mapping from positional and keyword arguments to parameters (simulating 'functools.partial' behavior.) """ __slots__ = ('_return_annotation', '_parameters') _parameter_cls = Parameter _bound_arguments_cls = BoundArguments empty = _empty def __init__(self, parameters=None, *, return_annotation=_empty, __validate_parameters__=True): """Constructs Signature from the given list of Parameter objects and 'return_annotation'. All arguments are optional. """ if parameters is None: params = OrderedDict() else: if __validate_parameters__: params = OrderedDict() top_kind = _POSITIONAL_ONLY seen_default = False for param in parameters: kind = param.kind name = param.name if kind < top_kind: msg = ( 'wrong parameter order: {} parameter before {} ' 'parameter' ) msg = msg.format(top_kind.description, kind.description) raise ValueError(msg) elif kind > top_kind: top_kind = kind if kind in (_POSITIONAL_ONLY, _POSITIONAL_OR_KEYWORD): if param.default is _empty: if seen_default: # No default for this parameter, but the # previous parameter of had a default msg = 'non-default argument follows default ' \ 'argument' raise ValueError(msg) else: # There is a default for this parameter. seen_default = True if name in params: msg = 'duplicate parameter name: {!r}'.format(name) raise ValueError(msg) params[name] = param else: params = OrderedDict((param.name, param) for param in parameters) self._parameters = types.MappingProxyType(params) self._return_annotation = return_annotation @classmethod def from_callable(cls, obj, *, follow_wrapped=True, globals=None, locals=None, eval_str=False): """Constructs Signature for the given callable object.""" return _signature_from_callable(obj, sigcls=cls, follow_wrapper_chains=follow_wrapped, globals=globals, locals=locals, eval_str=eval_str) @property def parameters(self): return self._parameters @property def return_annotation(self): return self._return_annotation def replace(self, *, parameters=_void, return_annotation=_void): """Creates a customized copy of the Signature. Pass 'parameters' and/or 'return_annotation' arguments to override them in the new copy. """ if parameters is _void: parameters = self.parameters.values() if return_annotation is _void: return_annotation = self._return_annotation return type(self)(parameters, return_annotation=return_annotation) def _hash_basis(self): params = tuple(param for param in self.parameters.values() if param.kind != _KEYWORD_ONLY) kwo_params = {param.name: param for param in self.parameters.values() if param.kind == _KEYWORD_ONLY} return params, kwo_params, self.return_annotation def __hash__(self): params, kwo_params, return_annotation = self._hash_basis() kwo_params = frozenset(kwo_params.values()) return hash((params, kwo_params, return_annotation)) def __eq__(self, other): if self is other: return True if not isinstance(other, Signature): return NotImplemented return self._hash_basis() == other._hash_basis() def _bind(self, args, kwargs, *, partial=False): """Private method. Don't use directly.""" arguments = {} parameters = iter(self.parameters.values()) parameters_ex = () arg_vals = iter(args) pos_only_param_in_kwargs = [] while True: # Let's iterate through the positional arguments and corresponding # parameters try: arg_val = next(arg_vals) except StopIteration: # No more positional arguments try: param = next(parameters) except StopIteration: # No more parameters. That's it. Just need to check that # we have no `kwargs` after this while loop break else: if param.kind == _VAR_POSITIONAL: # That's OK, just empty *args. Let's start parsing # kwargs break elif param.name in kwargs: if param.kind == _POSITIONAL_ONLY: # Raise a TypeError once we are sure there is no # **kwargs param later. pos_only_param_in_kwargs.append(param) continue parameters_ex = (param,) break elif (param.kind == _VAR_KEYWORD or param.default is not _empty): # That's fine too - we have a default value for this # parameter. So, lets start parsing `kwargs`, starting # with the current parameter parameters_ex = (param,) break else: # No default, not VAR_KEYWORD, not VAR_POSITIONAL, # not in `kwargs` if partial: parameters_ex = (param,) break else: if param.kind == _KEYWORD_ONLY: argtype = ' keyword-only' else: argtype = '' msg = 'missing a required{argtype} argument: {arg!r}' msg = msg.format(arg=param.name, argtype=argtype) raise TypeError(msg) from None else: # We have a positional argument to process try: param = next(parameters) except StopIteration: raise TypeError('too many positional arguments') from None else: if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY): # Looks like we have no parameter for this positional # argument raise TypeError( 'too many positional arguments') from None if param.kind == _VAR_POSITIONAL: # We have an '*args'-like argument, let's fill it with # all positional arguments we have left and move on to # the next phase values = [arg_val] values.extend(arg_vals) arguments[param.name] = tuple(values) break if param.name in kwargs and param.kind != _POSITIONAL_ONLY: raise TypeError( 'multiple values for argument {arg!r}'.format( arg=param.name)) from None arguments[param.name] = arg_val # Now, we iterate through the remaining parameters to process # keyword arguments kwargs_param = None for param in itertools.chain(parameters_ex, parameters): if param.kind == _VAR_KEYWORD: # Memorize that we have a '**kwargs'-like parameter kwargs_param = param continue if param.kind == _VAR_POSITIONAL: # Named arguments don't refer to '*args'-like parameters. # We only arrive here if the positional arguments ended # before reaching the last parameter before *args. continue param_name = param.name try: arg_val = kwargs.pop(param_name) except KeyError: # We have no value for this parameter. It's fine though, # if it has a default value, or it is an '*args'-like # parameter, left alone by the processing of positional # arguments. if (not partial and param.kind != _VAR_POSITIONAL and param.default is _empty): raise TypeError('missing a required argument: {arg!r}'. \ format(arg=param_name)) from None else: arguments[param_name] = arg_val if kwargs: if kwargs_param is not None: # Process our '**kwargs'-like parameter arguments[kwargs_param.name] = kwargs elif pos_only_param_in_kwargs: raise TypeError( 'got some positional-only arguments passed as ' 'keyword arguments: {arg!r}'.format( arg=', '.join( param.name for param in pos_only_param_in_kwargs ), ), ) else: raise TypeError( 'got an unexpected keyword argument {arg!r}'.format( arg=next(iter(kwargs)))) return self._bound_arguments_cls(self, arguments) def bind(self, /, *args, **kwargs): """Get a BoundArguments object, that maps the passed `args` and `kwargs` to the function's signature. Raises `TypeError` if the passed arguments can not be bound. """ return self._bind(args, kwargs) def bind_partial(self, /, *args, **kwargs): """Get a BoundArguments object, that partially maps the passed `args` and `kwargs` to the function's signature. Raises `TypeError` if the passed arguments can not be bound. """ return self._bind(args, kwargs, partial=True) def __reduce__(self): return (type(self), (tuple(self._parameters.values()),), {'_return_annotation': self._return_annotation}) def __setstate__(self, state): self._return_annotation = state['_return_annotation'] def __repr__(self): return '<{} {}>'.format(self.__class__.__name__, self) def __str__(self): result = [] render_pos_only_separator = False render_kw_only_separator = True for param in self.parameters.values(): formatted = str(param) kind = param.kind if kind == _POSITIONAL_ONLY: render_pos_only_separator = True elif render_pos_only_separator: # It's not a positional-only parameter, and the flag # is set to 'True' (there were pos-only params before.) result.append('/') render_pos_only_separator = False if kind == _VAR_POSITIONAL: # OK, we have an '*args'-like parameter, so we won't need # a '*' to separate keyword-only arguments render_kw_only_separator = False elif kind == _KEYWORD_ONLY and render_kw_only_separator: # We have a keyword-only parameter to render and we haven't # rendered an '*args'-like parameter before, so add a '*' # separator to the parameters list ("foo(arg1, *, arg2)" case) result.append('*') # This condition should be only triggered once, so # reset the flag render_kw_only_separator = False result.append(formatted) if render_pos_only_separator: # There were only positional-only parameters, hence the # flag was not reset to 'False' result.append('/') rendered = '({})'.format(', '.join(result)) if self.return_annotation is not _empty: anno = formatannotation(self.return_annotation) rendered += ' -> {}'.format(anno) return rendered def signature(obj, *, follow_wrapped=True, globals=None, locals=None, eval_str=False): """Get a signature object for the passed callable.""" return Signature.from_callable(obj, follow_wrapped=follow_wrapped, globals=globals, locals=locals, eval_str=eval_str) class BufferFlags(enum.IntFlag): SIMPLE = 0x0 WRITABLE = 0x1 FORMAT = 0x4 ND = 0x8 STRIDES = 0x10 | ND C_CONTIGUOUS = 0x20 | STRIDES F_CONTIGUOUS = 0x40 | STRIDES ANY_CONTIGUOUS = 0x80 | STRIDES INDIRECT = 0x100 | STRIDES CONTIG = ND | WRITABLE CONTIG_RO = ND STRIDED = STRIDES | WRITABLE STRIDED_RO = STRIDES RECORDS = STRIDES | WRITABLE | FORMAT RECORDS_RO = STRIDES | FORMAT FULL = INDIRECT | WRITABLE | FORMAT FULL_RO = INDIRECT | FORMAT READ = 0x100 WRITE = 0x200 def _main(): """ Logic for inspecting an object given at command line """ import argparse import importlib parser = argparse.ArgumentParser() parser.add_argument( 'object', help="The object to be analysed. " "It supports the 'module:qualname' syntax") parser.add_argument( '-d', '--details', action='store_true', help='Display info about the module rather than its source code') args = parser.parse_args() target = args.object mod_name, has_attrs, attrs = target.partition(":") try: obj = module = importlib.import_module(mod_name) except Exception as exc: msg = "Failed to import {} ({}: {})".format(mod_name, type(exc).__name__, exc) print(msg, file=sys.stderr) sys.exit(2) if has_attrs: parts = attrs.split(".") obj = module for part in parts: obj = getattr(obj, part) if module.__name__ in sys.builtin_module_names: print("Can't get info for builtin modules.", file=sys.stderr) sys.exit(1) if args.details: print('Target: {}'.format(target)) print('Origin: {}'.format(getsourcefile(module))) print('Cached: {}'.format(module.__cached__)) if obj is module: print('Loader: {}'.format(repr(module.__loader__))) if hasattr(module, '__path__'): print('Submodule search path: {}'.format(module.__path__)) else: try: __, lineno = findsource(obj) except Exception: pass else: print('Line: {}'.format(lineno)) print('\n') else: print(getsource(obj)) if __name__ == "__main__": _main()