Server IP : 66.29.132.122 / Your IP : 3.148.107.229 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/proc/self/root/proc/thread-self/root/opt/hc_python/lib64/python3.8/site-packages/sentry_sdk/integrations/ |
Upload File : |
from collections import OrderedDict from functools import wraps import sentry_sdk from sentry_sdk.ai.monitoring import set_ai_pipeline_name, record_token_usage from sentry_sdk.consts import OP, SPANDATA from sentry_sdk.ai.utils import set_data_normalized from sentry_sdk.scope import should_send_default_pii from sentry_sdk.tracing import Span from sentry_sdk.integrations import DidNotEnable, Integration from sentry_sdk.utils import logger, capture_internal_exceptions from typing import TYPE_CHECKING if TYPE_CHECKING: from typing import Any, List, Callable, Dict, Union, Optional from uuid import UUID try: from langchain_core.messages import BaseMessage from langchain_core.outputs import LLMResult from langchain_core.callbacks import ( manager, BaseCallbackHandler, ) from langchain_core.agents import AgentAction, AgentFinish except ImportError: raise DidNotEnable("langchain not installed") DATA_FIELDS = { "temperature": SPANDATA.AI_TEMPERATURE, "top_p": SPANDATA.AI_TOP_P, "top_k": SPANDATA.AI_TOP_K, "function_call": SPANDATA.AI_FUNCTION_CALL, "tool_calls": SPANDATA.AI_TOOL_CALLS, "tools": SPANDATA.AI_TOOLS, "response_format": SPANDATA.AI_RESPONSE_FORMAT, "logit_bias": SPANDATA.AI_LOGIT_BIAS, "tags": SPANDATA.AI_TAGS, } # To avoid double collecting tokens, we do *not* measure # token counts for models for which we have an explicit integration NO_COLLECT_TOKEN_MODELS = [ "openai-chat", "anthropic-chat", "cohere-chat", "huggingface_endpoint", ] class LangchainIntegration(Integration): identifier = "langchain" origin = f"auto.ai.{identifier}" # The most number of spans (e.g., LLM calls) that can be processed at the same time. max_spans = 1024 def __init__( self, include_prompts=True, max_spans=1024, tiktoken_encoding_name=None ): # type: (LangchainIntegration, bool, int, Optional[str]) -> None self.include_prompts = include_prompts self.max_spans = max_spans self.tiktoken_encoding_name = tiktoken_encoding_name @staticmethod def setup_once(): # type: () -> None manager._configure = _wrap_configure(manager._configure) class WatchedSpan: span = None # type: Span num_completion_tokens = 0 # type: int num_prompt_tokens = 0 # type: int no_collect_tokens = False # type: bool children = [] # type: List[WatchedSpan] is_pipeline = False # type: bool def __init__(self, span): # type: (Span) -> None self.span = span class SentryLangchainCallback(BaseCallbackHandler): # type: ignore[misc] """Base callback handler that can be used to handle callbacks from langchain.""" span_map = OrderedDict() # type: OrderedDict[UUID, WatchedSpan] max_span_map_size = 0 def __init__(self, max_span_map_size, include_prompts, tiktoken_encoding_name=None): # type: (int, bool, Optional[str]) -> None self.max_span_map_size = max_span_map_size self.include_prompts = include_prompts self.tiktoken_encoding = None if tiktoken_encoding_name is not None: import tiktoken # type: ignore self.tiktoken_encoding = tiktoken.get_encoding(tiktoken_encoding_name) def count_tokens(self, s): # type: (str) -> int if self.tiktoken_encoding is not None: return len(self.tiktoken_encoding.encode_ordinary(s)) return 0 def gc_span_map(self): # type: () -> None while len(self.span_map) > self.max_span_map_size: run_id, watched_span = self.span_map.popitem(last=False) self._exit_span(watched_span, run_id) def _handle_error(self, run_id, error): # type: (UUID, Any) -> None if not run_id or run_id not in self.span_map: return span_data = self.span_map[run_id] if not span_data: return sentry_sdk.capture_exception(error, span_data.span.scope) span_data.span.__exit__(None, None, None) del self.span_map[run_id] def _normalize_langchain_message(self, message): # type: (BaseMessage) -> Any parsed = {"content": message.content, "role": message.type} parsed.update(message.additional_kwargs) return parsed def _create_span(self, run_id, parent_id, **kwargs): # type: (SentryLangchainCallback, UUID, Optional[Any], Any) -> WatchedSpan watched_span = None # type: Optional[WatchedSpan] if parent_id: parent_span = self.span_map.get(parent_id) # type: Optional[WatchedSpan] if parent_span: watched_span = WatchedSpan(parent_span.span.start_child(**kwargs)) parent_span.children.append(watched_span) if watched_span is None: watched_span = WatchedSpan(sentry_sdk.start_span(**kwargs)) if kwargs.get("op", "").startswith("ai.pipeline."): if kwargs.get("name"): set_ai_pipeline_name(kwargs.get("name")) watched_span.is_pipeline = True watched_span.span.__enter__() self.span_map[run_id] = watched_span self.gc_span_map() return watched_span def _exit_span(self, span_data, run_id): # type: (SentryLangchainCallback, WatchedSpan, UUID) -> None if span_data.is_pipeline: set_ai_pipeline_name(None) span_data.span.__exit__(None, None, None) del self.span_map[run_id] def on_llm_start( self, serialized, prompts, *, run_id, tags=None, parent_run_id=None, metadata=None, **kwargs, ): # type: (SentryLangchainCallback, Dict[str, Any], List[str], UUID, Optional[List[str]], Optional[UUID], Optional[Dict[str, Any]], Any) -> Any """Run when LLM starts running.""" with capture_internal_exceptions(): if not run_id: return all_params = kwargs.get("invocation_params", {}) all_params.update(serialized.get("kwargs", {})) watched_span = self._create_span( run_id, kwargs.get("parent_run_id"), op=OP.LANGCHAIN_RUN, name=kwargs.get("name") or "Langchain LLM call", origin=LangchainIntegration.origin, ) span = watched_span.span if should_send_default_pii() and self.include_prompts: set_data_normalized(span, SPANDATA.AI_INPUT_MESSAGES, prompts) for k, v in DATA_FIELDS.items(): if k in all_params: set_data_normalized(span, v, all_params[k]) def on_chat_model_start(self, serialized, messages, *, run_id, **kwargs): # type: (SentryLangchainCallback, Dict[str, Any], List[List[BaseMessage]], UUID, Any) -> Any """Run when Chat Model starts running.""" with capture_internal_exceptions(): if not run_id: return all_params = kwargs.get("invocation_params", {}) all_params.update(serialized.get("kwargs", {})) watched_span = self._create_span( run_id, kwargs.get("parent_run_id"), op=OP.LANGCHAIN_CHAT_COMPLETIONS_CREATE, name=kwargs.get("name") or "Langchain Chat Model", origin=LangchainIntegration.origin, ) span = watched_span.span model = all_params.get( "model", all_params.get("model_name", all_params.get("model_id")) ) watched_span.no_collect_tokens = any( x in all_params.get("_type", "") for x in NO_COLLECT_TOKEN_MODELS ) if not model and "anthropic" in all_params.get("_type"): model = "claude-2" if model: span.set_data(SPANDATA.AI_MODEL_ID, model) if should_send_default_pii() and self.include_prompts: set_data_normalized( span, SPANDATA.AI_INPUT_MESSAGES, [ [self._normalize_langchain_message(x) for x in list_] for list_ in messages ], ) for k, v in DATA_FIELDS.items(): if k in all_params: set_data_normalized(span, v, all_params[k]) if not watched_span.no_collect_tokens: for list_ in messages: for message in list_: self.span_map[run_id].num_prompt_tokens += self.count_tokens( message.content ) + self.count_tokens(message.type) def on_llm_new_token(self, token, *, run_id, **kwargs): # type: (SentryLangchainCallback, str, UUID, Any) -> Any """Run on new LLM token. Only available when streaming is enabled.""" with capture_internal_exceptions(): if not run_id or run_id not in self.span_map: return span_data = self.span_map[run_id] if not span_data or span_data.no_collect_tokens: return span_data.num_completion_tokens += self.count_tokens(token) def on_llm_end(self, response, *, run_id, **kwargs): # type: (SentryLangchainCallback, LLMResult, UUID, Any) -> Any """Run when LLM ends running.""" with capture_internal_exceptions(): if not run_id: return token_usage = ( response.llm_output.get("token_usage") if response.llm_output else None ) span_data = self.span_map[run_id] if not span_data: return if should_send_default_pii() and self.include_prompts: set_data_normalized( span_data.span, SPANDATA.AI_RESPONSES, [[x.text for x in list_] for list_ in response.generations], ) if not span_data.no_collect_tokens: if token_usage: record_token_usage( span_data.span, token_usage.get("prompt_tokens"), token_usage.get("completion_tokens"), token_usage.get("total_tokens"), ) else: record_token_usage( span_data.span, span_data.num_prompt_tokens, span_data.num_completion_tokens, ) self._exit_span(span_data, run_id) def on_llm_error(self, error, *, run_id, **kwargs): # type: (SentryLangchainCallback, Union[Exception, KeyboardInterrupt], UUID, Any) -> Any """Run when LLM errors.""" with capture_internal_exceptions(): self._handle_error(run_id, error) def on_chain_start(self, serialized, inputs, *, run_id, **kwargs): # type: (SentryLangchainCallback, Dict[str, Any], Dict[str, Any], UUID, Any) -> Any """Run when chain starts running.""" with capture_internal_exceptions(): if not run_id: return watched_span = self._create_span( run_id, kwargs.get("parent_run_id"), op=( OP.LANGCHAIN_RUN if kwargs.get("parent_run_id") is not None else OP.LANGCHAIN_PIPELINE ), name=kwargs.get("name") or "Chain execution", origin=LangchainIntegration.origin, ) metadata = kwargs.get("metadata") if metadata: set_data_normalized(watched_span.span, SPANDATA.AI_METADATA, metadata) def on_chain_end(self, outputs, *, run_id, **kwargs): # type: (SentryLangchainCallback, Dict[str, Any], UUID, Any) -> Any """Run when chain ends running.""" with capture_internal_exceptions(): if not run_id or run_id not in self.span_map: return span_data = self.span_map[run_id] if not span_data: return self._exit_span(span_data, run_id) def on_chain_error(self, error, *, run_id, **kwargs): # type: (SentryLangchainCallback, Union[Exception, KeyboardInterrupt], UUID, Any) -> Any """Run when chain errors.""" self._handle_error(run_id, error) def on_agent_action(self, action, *, run_id, **kwargs): # type: (SentryLangchainCallback, AgentAction, UUID, Any) -> Any with capture_internal_exceptions(): if not run_id: return watched_span = self._create_span( run_id, kwargs.get("parent_run_id"), op=OP.LANGCHAIN_AGENT, name=action.tool or "AI tool usage", origin=LangchainIntegration.origin, ) if action.tool_input and should_send_default_pii() and self.include_prompts: set_data_normalized( watched_span.span, SPANDATA.AI_INPUT_MESSAGES, action.tool_input ) def on_agent_finish(self, finish, *, run_id, **kwargs): # type: (SentryLangchainCallback, AgentFinish, UUID, Any) -> Any with capture_internal_exceptions(): if not run_id: return span_data = self.span_map[run_id] if not span_data: return if should_send_default_pii() and self.include_prompts: set_data_normalized( span_data.span, SPANDATA.AI_RESPONSES, finish.return_values.items() ) self._exit_span(span_data, run_id) def on_tool_start(self, serialized, input_str, *, run_id, **kwargs): # type: (SentryLangchainCallback, Dict[str, Any], str, UUID, Any) -> Any """Run when tool starts running.""" with capture_internal_exceptions(): if not run_id: return watched_span = self._create_span( run_id, kwargs.get("parent_run_id"), op=OP.LANGCHAIN_TOOL, name=serialized.get("name") or kwargs.get("name") or "AI tool usage", origin=LangchainIntegration.origin, ) if should_send_default_pii() and self.include_prompts: set_data_normalized( watched_span.span, SPANDATA.AI_INPUT_MESSAGES, kwargs.get("inputs", [input_str]), ) if kwargs.get("metadata"): set_data_normalized( watched_span.span, SPANDATA.AI_METADATA, kwargs.get("metadata") ) def on_tool_end(self, output, *, run_id, **kwargs): # type: (SentryLangchainCallback, str, UUID, Any) -> Any """Run when tool ends running.""" with capture_internal_exceptions(): if not run_id or run_id not in self.span_map: return span_data = self.span_map[run_id] if not span_data: return if should_send_default_pii() and self.include_prompts: set_data_normalized(span_data.span, SPANDATA.AI_RESPONSES, output) self._exit_span(span_data, run_id) def on_tool_error(self, error, *args, run_id, **kwargs): # type: (SentryLangchainCallback, Union[Exception, KeyboardInterrupt], UUID, Any) -> Any """Run when tool errors.""" self._handle_error(run_id, error) def _wrap_configure(f): # type: (Callable[..., Any]) -> Callable[..., Any] @wraps(f) def new_configure(*args, **kwargs): # type: (Any, Any) -> Any integration = sentry_sdk.get_client().get_integration(LangchainIntegration) if integration is None: return f(*args, **kwargs) with capture_internal_exceptions(): new_callbacks = [] # type: List[BaseCallbackHandler] if "local_callbacks" in kwargs: existing_callbacks = kwargs["local_callbacks"] kwargs["local_callbacks"] = new_callbacks elif len(args) > 2: existing_callbacks = args[2] args = ( args[0], args[1], new_callbacks, ) + args[3:] else: existing_callbacks = [] if existing_callbacks: if isinstance(existing_callbacks, list): for cb in existing_callbacks: new_callbacks.append(cb) elif isinstance(existing_callbacks, BaseCallbackHandler): new_callbacks.append(existing_callbacks) else: logger.debug("Unknown callback type: %s", existing_callbacks) already_added = False for callback in new_callbacks: if isinstance(callback, SentryLangchainCallback): already_added = True if not already_added: new_callbacks.append( SentryLangchainCallback( integration.max_spans, integration.include_prompts, integration.tiktoken_encoding_name, ) ) return f(*args, **kwargs) return new_configure