Server IP : 66.29.132.122 / Your IP : 3.129.253.113 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/opt/alt/python312/include/python3.12/internal/ |
Upload File : |
#ifndef Py_INTERNAL_OBJECT_H #define Py_INTERNAL_OBJECT_H #ifdef __cplusplus extern "C" { #endif #ifndef Py_BUILD_CORE # error "this header requires Py_BUILD_CORE define" #endif #include <stdbool.h> #include "pycore_gc.h" // _PyObject_GC_IS_TRACKED() #include "pycore_interp.h" // PyInterpreterState.gc #include "pycore_pystate.h" // _PyInterpreterState_GET() #include "pycore_runtime.h" // _PyRuntime /* We need to maintain an internal copy of Py{Var}Object_HEAD_INIT to avoid designated initializer conflicts in C++20. If we use the deinition in object.h, we will be mixing designated and non-designated initializers in pycore objects which is forbiddent in C++20. However, if we then use designated initializers in object.h then Extensions without designated break. Furthermore, we can't use designated initializers in Extensions since these are not supported pre-C++20. Thus, keeping an internal copy here is the most backwards compatible solution */ #define _PyObject_HEAD_INIT(type) \ { \ _PyObject_EXTRA_INIT \ .ob_refcnt = _Py_IMMORTAL_REFCNT, \ .ob_type = (type) \ }, #define _PyVarObject_HEAD_INIT(type, size) \ { \ .ob_base = _PyObject_HEAD_INIT(type) \ .ob_size = size \ }, PyAPI_FUNC(void) _Py_NO_RETURN _Py_FatalRefcountErrorFunc( const char *func, const char *message); #define _Py_FatalRefcountError(message) \ _Py_FatalRefcountErrorFunc(__func__, (message)) #ifdef Py_REF_DEBUG /* The symbol is only exposed in the API for the sake of extensions built against the pre-3.12 stable ABI. */ PyAPI_DATA(Py_ssize_t) _Py_RefTotal; extern void _Py_AddRefTotal(PyInterpreterState *, Py_ssize_t); extern void _Py_IncRefTotal(PyInterpreterState *); extern void _Py_DecRefTotal(PyInterpreterState *); # define _Py_DEC_REFTOTAL(interp) \ interp->object_state.reftotal-- #endif // Increment reference count by n static inline void _Py_RefcntAdd(PyObject* op, Py_ssize_t n) { if (_Py_IsImmortal(op)) { return; } #ifdef Py_REF_DEBUG _Py_AddRefTotal(_PyInterpreterState_GET(), n); #endif op->ob_refcnt += n; } #define _Py_RefcntAdd(op, n) _Py_RefcntAdd(_PyObject_CAST(op), n) static inline void _Py_SetImmortal(PyObject *op) { if (op) { op->ob_refcnt = _Py_IMMORTAL_REFCNT; } } #define _Py_SetImmortal(op) _Py_SetImmortal(_PyObject_CAST(op)) /* _Py_ClearImmortal() should only be used during runtime finalization. */ static inline void _Py_ClearImmortal(PyObject *op) { if (op) { assert(_Py_IsImmortal(op)); op->ob_refcnt = 1; Py_DECREF(op); } } #define _Py_ClearImmortal(op) \ do { \ _Py_ClearImmortal(_PyObject_CAST(op)); \ op = NULL; \ } while (0) static inline void _Py_DECREF_SPECIALIZED(PyObject *op, const destructor destruct) { if (_Py_IsImmortal(op)) { return; } _Py_DECREF_STAT_INC(); #ifdef Py_REF_DEBUG _Py_DEC_REFTOTAL(_PyInterpreterState_GET()); #endif if (--op->ob_refcnt != 0) { assert(op->ob_refcnt > 0); } else { #ifdef Py_TRACE_REFS _Py_ForgetReference(op); #endif destruct(op); } } static inline void _Py_DECREF_NO_DEALLOC(PyObject *op) { if (_Py_IsImmortal(op)) { return; } _Py_DECREF_STAT_INC(); #ifdef Py_REF_DEBUG _Py_DEC_REFTOTAL(_PyInterpreterState_GET()); #endif op->ob_refcnt--; #ifdef Py_DEBUG if (op->ob_refcnt <= 0) { _Py_FatalRefcountError("Expected a positive remaining refcount"); } #endif } #ifdef Py_REF_DEBUG # undef _Py_DEC_REFTOTAL #endif PyAPI_FUNC(int) _PyType_CheckConsistency(PyTypeObject *type); PyAPI_FUNC(int) _PyDict_CheckConsistency(PyObject *mp, int check_content); /* Update the Python traceback of an object. This function must be called when a memory block is reused from a free list. Internal function called by _Py_NewReference(). */ extern int _PyTraceMalloc_NewReference(PyObject *op); // Fast inlined version of PyType_HasFeature() static inline int _PyType_HasFeature(PyTypeObject *type, unsigned long feature) { return ((type->tp_flags & feature) != 0); } extern void _PyType_InitCache(PyInterpreterState *interp); extern void _PyObject_InitState(PyInterpreterState *interp); /* Inline functions trading binary compatibility for speed: _PyObject_Init() is the fast version of PyObject_Init(), and _PyObject_InitVar() is the fast version of PyObject_InitVar(). These inline functions must not be called with op=NULL. */ static inline void _PyObject_Init(PyObject *op, PyTypeObject *typeobj) { assert(op != NULL); Py_SET_TYPE(op, typeobj); if (_PyType_HasFeature(typeobj, Py_TPFLAGS_HEAPTYPE)) { Py_INCREF(typeobj); } _Py_NewReference(op); } static inline void _PyObject_InitVar(PyVarObject *op, PyTypeObject *typeobj, Py_ssize_t size) { assert(op != NULL); assert(typeobj != &PyLong_Type); _PyObject_Init((PyObject *)op, typeobj); Py_SET_SIZE(op, size); } /* Tell the GC to track this object. * * The object must not be tracked by the GC. * * NB: While the object is tracked by the collector, it must be safe to call the * ob_traverse method. * * Internal note: interp->gc.generation0->_gc_prev doesn't have any bit flags * because it's not object header. So we don't use _PyGCHead_PREV() and * _PyGCHead_SET_PREV() for it to avoid unnecessary bitwise operations. * * See also the public PyObject_GC_Track() function. */ static inline void _PyObject_GC_TRACK( // The preprocessor removes _PyObject_ASSERT_FROM() calls if NDEBUG is defined #ifndef NDEBUG const char *filename, int lineno, #endif PyObject *op) { _PyObject_ASSERT_FROM(op, !_PyObject_GC_IS_TRACKED(op), "object already tracked by the garbage collector", filename, lineno, __func__); PyGC_Head *gc = _Py_AS_GC(op); _PyObject_ASSERT_FROM(op, (gc->_gc_prev & _PyGC_PREV_MASK_COLLECTING) == 0, "object is in generation which is garbage collected", filename, lineno, __func__); PyInterpreterState *interp = _PyInterpreterState_GET(); PyGC_Head *generation0 = interp->gc.generation0; PyGC_Head *last = (PyGC_Head*)(generation0->_gc_prev); _PyGCHead_SET_NEXT(last, gc); _PyGCHead_SET_PREV(gc, last); _PyGCHead_SET_NEXT(gc, generation0); generation0->_gc_prev = (uintptr_t)gc; } /* Tell the GC to stop tracking this object. * * Internal note: This may be called while GC. So _PyGC_PREV_MASK_COLLECTING * must be cleared. But _PyGC_PREV_MASK_FINALIZED bit is kept. * * The object must be tracked by the GC. * * See also the public PyObject_GC_UnTrack() which accept an object which is * not tracked. */ static inline void _PyObject_GC_UNTRACK( // The preprocessor removes _PyObject_ASSERT_FROM() calls if NDEBUG is defined #ifndef NDEBUG const char *filename, int lineno, #endif PyObject *op) { _PyObject_ASSERT_FROM(op, _PyObject_GC_IS_TRACKED(op), "object not tracked by the garbage collector", filename, lineno, __func__); PyGC_Head *gc = _Py_AS_GC(op); PyGC_Head *prev = _PyGCHead_PREV(gc); PyGC_Head *next = _PyGCHead_NEXT(gc); _PyGCHead_SET_NEXT(prev, next); _PyGCHead_SET_PREV(next, prev); gc->_gc_next = 0; gc->_gc_prev &= _PyGC_PREV_MASK_FINALIZED; } // Macros to accept any type for the parameter, and to automatically pass // the filename and the filename (if NDEBUG is not defined) where the macro // is called. #ifdef NDEBUG # define _PyObject_GC_TRACK(op) \ _PyObject_GC_TRACK(_PyObject_CAST(op)) # define _PyObject_GC_UNTRACK(op) \ _PyObject_GC_UNTRACK(_PyObject_CAST(op)) #else # define _PyObject_GC_TRACK(op) \ _PyObject_GC_TRACK(__FILE__, __LINE__, _PyObject_CAST(op)) # define _PyObject_GC_UNTRACK(op) \ _PyObject_GC_UNTRACK(__FILE__, __LINE__, _PyObject_CAST(op)) #endif #ifdef Py_REF_DEBUG extern void _PyInterpreterState_FinalizeRefTotal(PyInterpreterState *); extern void _Py_FinalizeRefTotal(_PyRuntimeState *); extern void _PyDebug_PrintTotalRefs(void); #endif #ifdef Py_TRACE_REFS extern void _Py_AddToAllObjects(PyObject *op, int force); extern void _Py_PrintReferences(PyInterpreterState *, FILE *); extern void _Py_PrintReferenceAddresses(PyInterpreterState *, FILE *); #endif /* Return the *address* of the object's weaklist. The address may be * dereferenced to get the current head of the weaklist. This is useful * for iterating over the linked list of weakrefs, especially when the * list is being modified externally (e.g. refs getting removed). * * The returned pointer should not be used to change the head of the list * nor should it be used to add, remove, or swap any refs in the list. * That is the sole responsibility of the code in weakrefobject.c. */ static inline PyObject ** _PyObject_GET_WEAKREFS_LISTPTR(PyObject *op) { if (PyType_Check(op) && ((PyTypeObject *)op)->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { PyInterpreterState *interp = _PyInterpreterState_GET(); static_builtin_state *state = _PyStaticType_GetState( interp, (PyTypeObject *)op); return _PyStaticType_GET_WEAKREFS_LISTPTR(state); } // Essentially _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(): Py_ssize_t offset = Py_TYPE(op)->tp_weaklistoffset; return (PyObject **)((char *)op + offset); } /* This is a special case of _PyObject_GET_WEAKREFS_LISTPTR(). * Only the most fundamental lookup path is used. * Consequently, static types should not be used. * * For static builtin types the returned pointer will always point * to a NULL tp_weaklist. This is fine for any deallocation cases, * since static types are never deallocated and static builtin types * are only finalized at the end of runtime finalization. * * If the weaklist for static types is actually needed then use * _PyObject_GET_WEAKREFS_LISTPTR(). */ static inline PyWeakReference ** _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(PyObject *op) { assert(!PyType_Check(op) || ((PyTypeObject *)op)->tp_flags & Py_TPFLAGS_HEAPTYPE); Py_ssize_t offset = Py_TYPE(op)->tp_weaklistoffset; return (PyWeakReference **)((char *)op + offset); } // Fast inlined version of PyObject_IS_GC() static inline int _PyObject_IS_GC(PyObject *obj) { return (PyType_IS_GC(Py_TYPE(obj)) && (Py_TYPE(obj)->tp_is_gc == NULL || Py_TYPE(obj)->tp_is_gc(obj))); } // Fast inlined version of PyType_IS_GC() #define _PyType_IS_GC(t) _PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC) static inline size_t _PyType_PreHeaderSize(PyTypeObject *tp) { return _PyType_IS_GC(tp) * sizeof(PyGC_Head) + _PyType_HasFeature(tp, Py_TPFLAGS_PREHEADER) * 2 * sizeof(PyObject *); } void _PyObject_GC_Link(PyObject *op); // Usage: assert(_Py_CheckSlotResult(obj, "__getitem__", result != NULL)); extern int _Py_CheckSlotResult( PyObject *obj, const char *slot_name, int success); // Test if a type supports weak references static inline int _PyType_SUPPORTS_WEAKREFS(PyTypeObject *type) { return (type->tp_weaklistoffset != 0); } extern PyObject* _PyType_AllocNoTrack(PyTypeObject *type, Py_ssize_t nitems); extern int _PyObject_InitializeDict(PyObject *obj); extern int _PyObject_StoreInstanceAttribute(PyObject *obj, PyDictValues *values, PyObject *name, PyObject *value); PyObject * _PyObject_GetInstanceAttribute(PyObject *obj, PyDictValues *values, PyObject *name); typedef union { PyObject *dict; /* Use a char* to generate a warning if directly assigning a PyDictValues */ char *values; } PyDictOrValues; static inline PyDictOrValues * _PyObject_DictOrValuesPointer(PyObject *obj) { assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_MANAGED_DICT); return ((PyDictOrValues *)obj)-3; } static inline int _PyDictOrValues_IsValues(PyDictOrValues dorv) { return ((uintptr_t)dorv.values) & 1; } static inline PyDictValues * _PyDictOrValues_GetValues(PyDictOrValues dorv) { assert(_PyDictOrValues_IsValues(dorv)); return (PyDictValues *)(dorv.values + 1); } static inline PyObject * _PyDictOrValues_GetDict(PyDictOrValues dorv) { assert(!_PyDictOrValues_IsValues(dorv)); return dorv.dict; } static inline void _PyDictOrValues_SetValues(PyDictOrValues *ptr, PyDictValues *values) { ptr->values = ((char *)values) - 1; } #define MANAGED_WEAKREF_OFFSET (((Py_ssize_t)sizeof(PyObject *))*-4) extern PyObject ** _PyObject_ComputedDictPointer(PyObject *); extern void _PyObject_FreeInstanceAttributes(PyObject *obj); extern int _PyObject_IsInstanceDictEmpty(PyObject *); PyAPI_FUNC(PyObject *) _PyObject_LookupSpecial(PyObject *, PyObject *); /* C function call trampolines to mitigate bad function pointer casts. * * Typical native ABIs ignore additional arguments or fill in missing * values with 0/NULL in function pointer cast. Compilers do not show * warnings when a function pointer is explicitly casted to an * incompatible type. * * Bad fpcasts are an issue in WebAssembly. WASM's indirect_call has strict * function signature checks. Argument count, types, and return type must * match. * * Third party code unintentionally rely on problematic fpcasts. The call * trampoline mitigates common occurrences of bad fpcasts on Emscripten. */ #if defined(__EMSCRIPTEN__) && defined(PY_CALL_TRAMPOLINE) #define _PyCFunction_TrampolineCall(meth, self, args) \ _PyCFunctionWithKeywords_TrampolineCall( \ (*(PyCFunctionWithKeywords)(void(*)(void))(meth)), (self), (args), NULL) extern PyObject* _PyCFunctionWithKeywords_TrampolineCall( PyCFunctionWithKeywords meth, PyObject *, PyObject *, PyObject *); #else #define _PyCFunction_TrampolineCall(meth, self, args) \ (meth)((self), (args)) #define _PyCFunctionWithKeywords_TrampolineCall(meth, self, args, kw) \ (meth)((self), (args), (kw)) #endif // __EMSCRIPTEN__ && PY_CALL_TRAMPOLINE #ifdef __cplusplus } #endif #endif /* !Py_INTERNAL_OBJECT_H */