Server IP : 66.29.132.122 / Your IP : 3.22.249.89 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /opt/imunify360/venv/lib/python3.11/site-packages/Crypto/PublicKey/ |
Upload File : |
# # ElGamal.py : ElGamal encryption/decryption and signatures # # Part of the Python Cryptography Toolkit # # Originally written by: A.M. Kuchling # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== __all__ = ['generate', 'construct', 'ElGamalKey'] from Crypto import Random from Crypto.Math.Primality import ( generate_probable_safe_prime, test_probable_prime, COMPOSITE ) from Crypto.Math.Numbers import Integer # Generate an ElGamal key with N bits def generate(bits, randfunc): """Randomly generate a fresh, new ElGamal key. The key will be safe for use for both encryption and signature (although it should be used for **only one** purpose). Args: bits (int): Key length, or size (in bits) of the modulus *p*. The recommended value is 2048. randfunc (callable): Random number generation function; it should accept a single integer *N* and return a string of random *N* random bytes. Return: an :class:`ElGamalKey` object """ obj=ElGamalKey() # Generate a safe prime p # See Algorithm 4.86 in Handbook of Applied Cryptography obj.p = generate_probable_safe_prime(exact_bits=bits, randfunc=randfunc) q = (obj.p - 1) >> 1 # Generate generator g while 1: # Choose a square residue; it will generate a cyclic group of order q. obj.g = pow(Integer.random_range(min_inclusive=2, max_exclusive=obj.p, randfunc=randfunc), 2, obj.p) # We must avoid g=2 because of Bleichenbacher's attack described # in "Generating ElGamal signatures without knowning the secret key", # 1996 if obj.g in (1, 2): continue # Discard g if it divides p-1 because of the attack described # in Note 11.67 (iii) in HAC if (obj.p - 1) % obj.g == 0: continue # g^{-1} must not divide p-1 because of Khadir's attack # described in "Conditions of the generator for forging ElGamal # signature", 2011 ginv = obj.g.inverse(obj.p) if (obj.p - 1) % ginv == 0: continue # Found break # Generate private key x obj.x = Integer.random_range(min_inclusive=2, max_exclusive=obj.p-1, randfunc=randfunc) # Generate public key y obj.y = pow(obj.g, obj.x, obj.p) return obj def construct(tup): r"""Construct an ElGamal key from a tuple of valid ElGamal components. The modulus *p* must be a prime. The following conditions must apply: .. math:: \begin{align} &1 < g < p-1 \\ &g^{p-1} = 1 \text{ mod } 1 \\ &1 < x < p-1 \\ &g^x = y \text{ mod } p \end{align} Args: tup (tuple): A tuple with either 3 or 4 integers, in the following order: 1. Modulus (*p*). 2. Generator (*g*). 3. Public key (*y*). 4. Private key (*x*). Optional. Raises: ValueError: when the key being imported fails the most basic ElGamal validity checks. Returns: an :class:`ElGamalKey` object """ obj=ElGamalKey() if len(tup) not in [3,4]: raise ValueError('argument for construct() wrong length') for i in range(len(tup)): field = obj._keydata[i] setattr(obj, field, Integer(tup[i])) fmt_error = test_probable_prime(obj.p) == COMPOSITE fmt_error |= obj.g<=1 or obj.g>=obj.p fmt_error |= pow(obj.g, obj.p-1, obj.p)!=1 fmt_error |= obj.y<1 or obj.y>=obj.p if len(tup)==4: fmt_error |= obj.x<=1 or obj.x>=obj.p fmt_error |= pow(obj.g, obj.x, obj.p)!=obj.y if fmt_error: raise ValueError("Invalid ElGamal key components") return obj class ElGamalKey(object): r"""Class defining an ElGamal key. Do not instantiate directly. Use :func:`generate` or :func:`construct` instead. :ivar p: Modulus :vartype d: integer :ivar g: Generator :vartype e: integer :ivar y: Public key component :vartype y: integer :ivar x: Private key component :vartype x: integer """ #: Dictionary of ElGamal parameters. #: #: A public key will only have the following entries: #: #: - **y**, the public key. #: - **g**, the generator. #: - **p**, the modulus. #: #: A private key will also have: #: #: - **x**, the private key. _keydata=['p', 'g', 'y', 'x'] def __init__(self, randfunc=None): if randfunc is None: randfunc = Random.new().read self._randfunc = randfunc def _encrypt(self, M, K): a=pow(self.g, K, self.p) b=( pow(self.y, K, self.p)*M ) % self.p return [int(a), int(b)] def _decrypt(self, M): if (not hasattr(self, 'x')): raise TypeError('Private key not available in this object') r = Integer.random_range(min_inclusive=2, max_exclusive=self.p-1, randfunc=self._randfunc) a_blind = (pow(self.g, r, self.p) * M[0]) % self.p ax=pow(a_blind, self.x, self.p) plaintext_blind = (ax.inverse(self.p) * M[1] ) % self.p plaintext = (plaintext_blind * pow(self.y, r, self.p)) % self.p return int(plaintext) def _sign(self, M, K): if (not hasattr(self, 'x')): raise TypeError('Private key not available in this object') p1=self.p-1 K = Integer(K) if (K.gcd(p1)!=1): raise ValueError('Bad K value: GCD(K,p-1)!=1') a=pow(self.g, K, self.p) t=(Integer(M)-self.x*a) % p1 while t<0: t=t+p1 b=(t*K.inverse(p1)) % p1 return [int(a), int(b)] def _verify(self, M, sig): sig = [Integer(x) for x in sig] if sig[0]<1 or sig[0]>self.p-1: return 0 v1=pow(self.y, sig[0], self.p) v1=(v1*pow(sig[0], sig[1], self.p)) % self.p v2=pow(self.g, M, self.p) if v1==v2: return 1 return 0 def has_private(self): """Whether this is an ElGamal private key""" if hasattr(self, 'x'): return 1 else: return 0 def can_encrypt(self): return True def can_sign(self): return True def publickey(self): """A matching ElGamal public key. Returns: a new :class:`ElGamalKey` object """ return construct((self.p, self.g, self.y)) def __eq__(self, other): if bool(self.has_private()) != bool(other.has_private()): return False result = True for comp in self._keydata: result = result and (getattr(self.key, comp, None) == getattr(other.key, comp, None)) return result def __ne__(self, other): return not self.__eq__(other) def __getstate__(self): # ElGamal key is not pickable from pickle import PicklingError raise PicklingError # Methods defined in PyCrypto that we don't support anymore def sign(self, M, K): raise NotImplementedError def verify(self, M, signature): raise NotImplementedError def encrypt(self, plaintext, K): raise NotImplementedError def decrypt(self, ciphertext): raise NotImplementedError def blind(self, M, B): raise NotImplementedError def unblind(self, M, B): raise NotImplementedError def size(self): raise NotImplementedError