Server IP : 66.29.132.122 / Your IP : 18.227.140.240 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /opt/cloudlinux/venv/lib64/python3.11/site-packages/pydantic/_internal/ |
Upload File : |
from __future__ import annotations from collections import defaultdict from copy import copy from functools import partial from typing import TYPE_CHECKING, Any, Callable, Iterable import annotated_types as at from pydantic_core import CoreSchema, PydanticCustomError, to_jsonable_python from pydantic_core import core_schema as cs from . import _validators from ._fields import PydanticGeneralMetadata, PydanticMetadata if TYPE_CHECKING: from ..annotated_handlers import GetJsonSchemaHandler STRICT = {'strict'} SEQUENCE_CONSTRAINTS = {'min_length', 'max_length'} INEQUALITY = {'le', 'ge', 'lt', 'gt'} NUMERIC_CONSTRAINTS = {'multiple_of', 'allow_inf_nan', *INEQUALITY} STR_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT, 'strip_whitespace', 'to_lower', 'to_upper', 'pattern'} BYTES_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT} LIST_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT} TUPLE_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT} SET_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT} DICT_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT} GENERATOR_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT} FLOAT_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT} INT_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT} BOOL_CONSTRAINTS = STRICT DATE_TIME_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT} TIMEDELTA_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT} TIME_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT} UNION_CONSTRAINTS = {'union_mode'} URL_CONSTRAINTS = { 'max_length', 'allowed_schemes', 'host_required', 'default_host', 'default_port', 'default_path', } TEXT_SCHEMA_TYPES = ('str', 'bytes', 'url', 'multi-host-url') SEQUENCE_SCHEMA_TYPES = ('list', 'tuple', 'set', 'frozenset', 'generator', *TEXT_SCHEMA_TYPES) NUMERIC_SCHEMA_TYPES = ('float', 'int', 'date', 'time', 'timedelta', 'datetime') CONSTRAINTS_TO_ALLOWED_SCHEMAS: dict[str, set[str]] = defaultdict(set) for constraint in STR_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(TEXT_SCHEMA_TYPES) for constraint in BYTES_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('bytes',)) for constraint in LIST_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('list',)) for constraint in TUPLE_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('tuple',)) for constraint in SET_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('set', 'frozenset')) for constraint in DICT_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('dict',)) for constraint in GENERATOR_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('generator',)) for constraint in FLOAT_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('float',)) for constraint in INT_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('int',)) for constraint in DATE_TIME_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('date', 'time', 'datetime')) for constraint in TIMEDELTA_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('timedelta',)) for constraint in TIME_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('time',)) for schema_type in (*TEXT_SCHEMA_TYPES, *SEQUENCE_SCHEMA_TYPES, *NUMERIC_SCHEMA_TYPES, 'typed-dict', 'model'): CONSTRAINTS_TO_ALLOWED_SCHEMAS['strict'].add(schema_type) for constraint in UNION_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('union',)) for constraint in URL_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('url', 'multi-host-url')) for constraint in BOOL_CONSTRAINTS: CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('bool',)) def add_js_update_schema(s: cs.CoreSchema, f: Callable[[], dict[str, Any]]) -> None: def update_js_schema(s: cs.CoreSchema, handler: GetJsonSchemaHandler) -> dict[str, Any]: js_schema = handler(s) js_schema.update(f()) return js_schema if 'metadata' in s: metadata = s['metadata'] if 'pydantic_js_functions' in s: metadata['pydantic_js_functions'].append(update_js_schema) else: metadata['pydantic_js_functions'] = [update_js_schema] else: s['metadata'] = {'pydantic_js_functions': [update_js_schema]} def as_jsonable_value(v: Any) -> Any: if type(v) not in (int, str, float, bytes, bool, type(None)): return to_jsonable_python(v) return v def expand_grouped_metadata(annotations: Iterable[Any]) -> Iterable[Any]: """Expand the annotations. Args: annotations: An iterable of annotations. Returns: An iterable of expanded annotations. Example: ```py from annotated_types import Ge, Len from pydantic._internal._known_annotated_metadata import expand_grouped_metadata print(list(expand_grouped_metadata([Ge(4), Len(5)]))) #> [Ge(ge=4), MinLen(min_length=5)] ``` """ from pydantic.fields import FieldInfo # circular import for annotation in annotations: if isinstance(annotation, at.GroupedMetadata): yield from annotation elif isinstance(annotation, FieldInfo): yield from annotation.metadata # this is a bit problematic in that it results in duplicate metadata # all of our "consumers" can handle it, but it is not ideal # we probably should split up FieldInfo into: # - annotated types metadata # - individual metadata known only to Pydantic annotation = copy(annotation) annotation.metadata = [] yield annotation else: yield annotation def apply_known_metadata(annotation: Any, schema: CoreSchema) -> CoreSchema | None: # noqa: C901 """Apply `annotation` to `schema` if it is an annotation we know about (Gt, Le, etc.). Otherwise return `None`. This does not handle all known annotations. If / when it does, it can always return a CoreSchema and return the unmodified schema if the annotation should be ignored. Assumes that GroupedMetadata has already been expanded via `expand_grouped_metadata`. Args: annotation: The annotation. schema: The schema. Returns: An updated schema with annotation if it is an annotation we know about, `None` otherwise. Raises: PydanticCustomError: If `Predicate` fails. """ schema = schema.copy() schema_update, other_metadata = collect_known_metadata([annotation]) schema_type = schema['type'] for constraint, value in schema_update.items(): if constraint not in CONSTRAINTS_TO_ALLOWED_SCHEMAS: raise ValueError(f'Unknown constraint {constraint}') allowed_schemas = CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint] if schema_type in allowed_schemas: if constraint == 'union_mode' and schema_type == 'union': schema['mode'] = value # type: ignore # schema is UnionSchema else: schema[constraint] = value continue if constraint == 'allow_inf_nan' and value is False: return cs.no_info_after_validator_function( _validators.forbid_inf_nan_check, schema, ) elif constraint == 'pattern': # insert a str schema to make sure the regex engine matches return cs.chain_schema( [ schema, cs.str_schema(pattern=value), ] ) elif constraint == 'gt': s = cs.no_info_after_validator_function( partial(_validators.greater_than_validator, gt=value), schema, ) add_js_update_schema(s, lambda: {'gt': as_jsonable_value(value)}) return s elif constraint == 'ge': return cs.no_info_after_validator_function( partial(_validators.greater_than_or_equal_validator, ge=value), schema, ) elif constraint == 'lt': return cs.no_info_after_validator_function( partial(_validators.less_than_validator, lt=value), schema, ) elif constraint == 'le': return cs.no_info_after_validator_function( partial(_validators.less_than_or_equal_validator, le=value), schema, ) elif constraint == 'multiple_of': return cs.no_info_after_validator_function( partial(_validators.multiple_of_validator, multiple_of=value), schema, ) elif constraint == 'min_length': s = cs.no_info_after_validator_function( partial(_validators.min_length_validator, min_length=value), schema, ) add_js_update_schema(s, lambda: {'minLength': (as_jsonable_value(value))}) return s elif constraint == 'max_length': s = cs.no_info_after_validator_function( partial(_validators.max_length_validator, max_length=value), schema, ) add_js_update_schema(s, lambda: {'maxLength': (as_jsonable_value(value))}) return s elif constraint == 'strip_whitespace': return cs.chain_schema( [ schema, cs.str_schema(strip_whitespace=True), ] ) elif constraint == 'to_lower': return cs.chain_schema( [ schema, cs.str_schema(to_lower=True), ] ) elif constraint == 'to_upper': return cs.chain_schema( [ schema, cs.str_schema(to_upper=True), ] ) elif constraint == 'min_length': return cs.no_info_after_validator_function( partial(_validators.min_length_validator, min_length=annotation.min_length), schema, ) elif constraint == 'max_length': return cs.no_info_after_validator_function( partial(_validators.max_length_validator, max_length=annotation.max_length), schema, ) else: raise RuntimeError(f'Unable to apply constraint {constraint} to schema {schema_type}') for annotation in other_metadata: if isinstance(annotation, at.Gt): return cs.no_info_after_validator_function( partial(_validators.greater_than_validator, gt=annotation.gt), schema, ) elif isinstance(annotation, at.Ge): return cs.no_info_after_validator_function( partial(_validators.greater_than_or_equal_validator, ge=annotation.ge), schema, ) elif isinstance(annotation, at.Lt): return cs.no_info_after_validator_function( partial(_validators.less_than_validator, lt=annotation.lt), schema, ) elif isinstance(annotation, at.Le): return cs.no_info_after_validator_function( partial(_validators.less_than_or_equal_validator, le=annotation.le), schema, ) elif isinstance(annotation, at.MultipleOf): return cs.no_info_after_validator_function( partial(_validators.multiple_of_validator, multiple_of=annotation.multiple_of), schema, ) elif isinstance(annotation, at.MinLen): return cs.no_info_after_validator_function( partial(_validators.min_length_validator, min_length=annotation.min_length), schema, ) elif isinstance(annotation, at.MaxLen): return cs.no_info_after_validator_function( partial(_validators.max_length_validator, max_length=annotation.max_length), schema, ) elif isinstance(annotation, at.Predicate): predicate_name = f'{annotation.func.__qualname__} ' if hasattr(annotation.func, '__qualname__') else '' def val_func(v: Any) -> Any: # annotation.func may also raise an exception, let it pass through if not annotation.func(v): raise PydanticCustomError( 'predicate_failed', f'Predicate {predicate_name}failed', # type: ignore ) return v return cs.no_info_after_validator_function(val_func, schema) # ignore any other unknown metadata return None return schema def collect_known_metadata(annotations: Iterable[Any]) -> tuple[dict[str, Any], list[Any]]: """Split `annotations` into known metadata and unknown annotations. Args: annotations: An iterable of annotations. Returns: A tuple contains a dict of known metadata and a list of unknown annotations. Example: ```py from annotated_types import Gt, Len from pydantic._internal._known_annotated_metadata import collect_known_metadata print(collect_known_metadata([Gt(1), Len(42), ...])) #> ({'gt': 1, 'min_length': 42}, [Ellipsis]) ``` """ annotations = expand_grouped_metadata(annotations) res: dict[str, Any] = {} remaining: list[Any] = [] for annotation in annotations: # Do we really want to consume any `BaseMetadata`? # It does let us give a better error when there is an annotation that doesn't apply # But it seems dangerous! if isinstance(annotation, PydanticGeneralMetadata): res.update(annotation.__dict__) elif isinstance(annotation, PydanticMetadata): res.update(annotation.__dict__) # we don't use dataclasses.asdict because that recursively calls asdict on the field values elif isinstance(annotation, at.MinLen): res.update({'min_length': annotation.min_length}) elif isinstance(annotation, at.MaxLen): res.update({'max_length': annotation.max_length}) elif isinstance(annotation, at.Gt): res.update({'gt': annotation.gt}) elif isinstance(annotation, at.Ge): res.update({'ge': annotation.ge}) elif isinstance(annotation, at.Lt): res.update({'lt': annotation.lt}) elif isinstance(annotation, at.Le): res.update({'le': annotation.le}) elif isinstance(annotation, at.MultipleOf): res.update({'multiple_of': annotation.multiple_of}) elif isinstance(annotation, type) and issubclass(annotation, PydanticMetadata): # also support PydanticMetadata classes being used without initialisation, # e.g. `Annotated[int, Strict]` as well as `Annotated[int, Strict()]` res.update({k: v for k, v in vars(annotation).items() if not k.startswith('_')}) else: remaining.append(annotation) # Nones can sneak in but pydantic-core will reject them # it'd be nice to clean things up so we don't put in None (we probably don't _need_ to, it was just easier) # but this is simple enough to kick that can down the road res = {k: v for k, v in res.items() if v is not None} return res, remaining def check_metadata(metadata: dict[str, Any], allowed: Iterable[str], source_type: Any) -> None: """A small utility function to validate that the given metadata can be applied to the target. More than saving lines of code, this gives us a consistent error message for all of our internal implementations. Args: metadata: A dict of metadata. allowed: An iterable of allowed metadata. source_type: The source type. Raises: TypeError: If there is metadatas that can't be applied on source type. """ unknown = metadata.keys() - set(allowed) if unknown: raise TypeError( f'The following constraints cannot be applied to {source_type!r}: {", ".join([f"{k!r}" for k in unknown])}' )