Server IP : 66.29.132.122 / Your IP : 18.222.113.226 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/ |
Upload File : |
import inspect import sys import os import tempfile from io import StringIO from unittest import mock import numpy as np from numpy.testing import ( assert_, assert_equal, assert_raises, assert_raises_regex) from numpy.core.overrides import ( _get_implementing_args, array_function_dispatch, verify_matching_signatures) from numpy.compat import pickle import pytest def _return_not_implemented(self, *args, **kwargs): return NotImplemented # need to define this at the top level to test pickling @array_function_dispatch(lambda array: (array,)) def dispatched_one_arg(array): """Docstring.""" return 'original' @array_function_dispatch(lambda array1, array2: (array1, array2)) def dispatched_two_arg(array1, array2): """Docstring.""" return 'original' class TestGetImplementingArgs: def test_ndarray(self): array = np.array(1) args = _get_implementing_args([array]) assert_equal(list(args), [array]) args = _get_implementing_args([array, array]) assert_equal(list(args), [array]) args = _get_implementing_args([array, 1]) assert_equal(list(args), [array]) args = _get_implementing_args([1, array]) assert_equal(list(args), [array]) def test_ndarray_subclasses(self): class OverrideSub(np.ndarray): __array_function__ = _return_not_implemented class NoOverrideSub(np.ndarray): pass array = np.array(1).view(np.ndarray) override_sub = np.array(1).view(OverrideSub) no_override_sub = np.array(1).view(NoOverrideSub) args = _get_implementing_args([array, override_sub]) assert_equal(list(args), [override_sub, array]) args = _get_implementing_args([array, no_override_sub]) assert_equal(list(args), [no_override_sub, array]) args = _get_implementing_args( [override_sub, no_override_sub]) assert_equal(list(args), [override_sub, no_override_sub]) def test_ndarray_and_duck_array(self): class Other: __array_function__ = _return_not_implemented array = np.array(1) other = Other() args = _get_implementing_args([other, array]) assert_equal(list(args), [other, array]) args = _get_implementing_args([array, other]) assert_equal(list(args), [array, other]) def test_ndarray_subclass_and_duck_array(self): class OverrideSub(np.ndarray): __array_function__ = _return_not_implemented class Other: __array_function__ = _return_not_implemented array = np.array(1) subarray = np.array(1).view(OverrideSub) other = Other() assert_equal(_get_implementing_args([array, subarray, other]), [subarray, array, other]) assert_equal(_get_implementing_args([array, other, subarray]), [subarray, array, other]) def test_many_duck_arrays(self): class A: __array_function__ = _return_not_implemented class B(A): __array_function__ = _return_not_implemented class C(A): __array_function__ = _return_not_implemented class D: __array_function__ = _return_not_implemented a = A() b = B() c = C() d = D() assert_equal(_get_implementing_args([1]), []) assert_equal(_get_implementing_args([a]), [a]) assert_equal(_get_implementing_args([a, 1]), [a]) assert_equal(_get_implementing_args([a, a, a]), [a]) assert_equal(_get_implementing_args([a, d, a]), [a, d]) assert_equal(_get_implementing_args([a, b]), [b, a]) assert_equal(_get_implementing_args([b, a]), [b, a]) assert_equal(_get_implementing_args([a, b, c]), [b, c, a]) assert_equal(_get_implementing_args([a, c, b]), [c, b, a]) def test_too_many_duck_arrays(self): namespace = dict(__array_function__=_return_not_implemented) types = [type('A' + str(i), (object,), namespace) for i in range(33)] relevant_args = [t() for t in types] actual = _get_implementing_args(relevant_args[:32]) assert_equal(actual, relevant_args[:32]) with assert_raises_regex(TypeError, 'distinct argument types'): _get_implementing_args(relevant_args) class TestNDArrayArrayFunction: def test_method(self): class Other: __array_function__ = _return_not_implemented class NoOverrideSub(np.ndarray): pass class OverrideSub(np.ndarray): __array_function__ = _return_not_implemented array = np.array([1]) other = Other() no_override_sub = array.view(NoOverrideSub) override_sub = array.view(OverrideSub) result = array.__array_function__(func=dispatched_two_arg, types=(np.ndarray,), args=(array, 1.), kwargs={}) assert_equal(result, 'original') result = array.__array_function__(func=dispatched_two_arg, types=(np.ndarray, Other), args=(array, other), kwargs={}) assert_(result is NotImplemented) result = array.__array_function__(func=dispatched_two_arg, types=(np.ndarray, NoOverrideSub), args=(array, no_override_sub), kwargs={}) assert_equal(result, 'original') result = array.__array_function__(func=dispatched_two_arg, types=(np.ndarray, OverrideSub), args=(array, override_sub), kwargs={}) assert_equal(result, 'original') with assert_raises_regex(TypeError, 'no implementation found'): np.concatenate((array, other)) expected = np.concatenate((array, array)) result = np.concatenate((array, no_override_sub)) assert_equal(result, expected.view(NoOverrideSub)) result = np.concatenate((array, override_sub)) assert_equal(result, expected.view(OverrideSub)) def test_no_wrapper(self): # This shouldn't happen unless a user intentionally calls # __array_function__ with invalid arguments, but check that we raise # an appropriate error all the same. array = np.array(1) func = lambda x: x with assert_raises_regex(AttributeError, '_implementation'): array.__array_function__(func=func, types=(np.ndarray,), args=(array,), kwargs={}) class TestArrayFunctionDispatch: def test_pickle(self): for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): roundtripped = pickle.loads( pickle.dumps(dispatched_one_arg, protocol=proto)) assert_(roundtripped is dispatched_one_arg) def test_name_and_docstring(self): assert_equal(dispatched_one_arg.__name__, 'dispatched_one_arg') if sys.flags.optimize < 2: assert_equal(dispatched_one_arg.__doc__, 'Docstring.') def test_interface(self): class MyArray: def __array_function__(self, func, types, args, kwargs): return (self, func, types, args, kwargs) original = MyArray() (obj, func, types, args, kwargs) = dispatched_one_arg(original) assert_(obj is original) assert_(func is dispatched_one_arg) assert_equal(set(types), {MyArray}) # assert_equal uses the overloaded np.iscomplexobj() internally assert_(args == (original,)) assert_equal(kwargs, {}) def test_not_implemented(self): class MyArray: def __array_function__(self, func, types, args, kwargs): return NotImplemented array = MyArray() with assert_raises_regex(TypeError, 'no implementation found'): dispatched_one_arg(array) def test_where_dispatch(self): class DuckArray: def __array_function__(self, ufunc, method, *inputs, **kwargs): return "overridden" array = np.array(1) duck_array = DuckArray() result = np.std(array, where=duck_array) assert_equal(result, "overridden") class TestVerifyMatchingSignatures: def test_verify_matching_signatures(self): verify_matching_signatures(lambda x: 0, lambda x: 0) verify_matching_signatures(lambda x=None: 0, lambda x=None: 0) verify_matching_signatures(lambda x=1: 0, lambda x=None: 0) with assert_raises(RuntimeError): verify_matching_signatures(lambda a: 0, lambda b: 0) with assert_raises(RuntimeError): verify_matching_signatures(lambda x: 0, lambda x=None: 0) with assert_raises(RuntimeError): verify_matching_signatures(lambda x=None: 0, lambda y=None: 0) with assert_raises(RuntimeError): verify_matching_signatures(lambda x=1: 0, lambda y=1: 0) def test_array_function_dispatch(self): with assert_raises(RuntimeError): @array_function_dispatch(lambda x: (x,)) def f(y): pass # should not raise @array_function_dispatch(lambda x: (x,), verify=False) def f(y): pass def _new_duck_type_and_implements(): """Create a duck array type and implements functions.""" HANDLED_FUNCTIONS = {} class MyArray: def __array_function__(self, func, types, args, kwargs): if func not in HANDLED_FUNCTIONS: return NotImplemented if not all(issubclass(t, MyArray) for t in types): return NotImplemented return HANDLED_FUNCTIONS[func](*args, **kwargs) def implements(numpy_function): """Register an __array_function__ implementations.""" def decorator(func): HANDLED_FUNCTIONS[numpy_function] = func return func return decorator return (MyArray, implements) class TestArrayFunctionImplementation: def test_one_arg(self): MyArray, implements = _new_duck_type_and_implements() @implements(dispatched_one_arg) def _(array): return 'myarray' assert_equal(dispatched_one_arg(1), 'original') assert_equal(dispatched_one_arg(MyArray()), 'myarray') def test_optional_args(self): MyArray, implements = _new_duck_type_and_implements() @array_function_dispatch(lambda array, option=None: (array,)) def func_with_option(array, option='default'): return option @implements(func_with_option) def my_array_func_with_option(array, new_option='myarray'): return new_option # we don't need to implement every option on __array_function__ # implementations assert_equal(func_with_option(1), 'default') assert_equal(func_with_option(1, option='extra'), 'extra') assert_equal(func_with_option(MyArray()), 'myarray') with assert_raises(TypeError): func_with_option(MyArray(), option='extra') # but new options on implementations can't be used result = my_array_func_with_option(MyArray(), new_option='yes') assert_equal(result, 'yes') with assert_raises(TypeError): func_with_option(MyArray(), new_option='no') def test_not_implemented(self): MyArray, implements = _new_duck_type_and_implements() @array_function_dispatch(lambda array: (array,), module='my') def func(array): return array array = np.array(1) assert_(func(array) is array) assert_equal(func.__module__, 'my') with assert_raises_regex( TypeError, "no implementation found for 'my.func'"): func(MyArray()) @pytest.mark.parametrize("name", ["concatenate", "mean", "asarray"]) def test_signature_error_message_simple(self, name): func = getattr(np, name) try: # all of these functions need an argument: func() except TypeError as e: exc = e assert exc.args[0].startswith(f"{name}()") def test_signature_error_message(self): # The lambda function will be named "<lambda>", but the TypeError # should show the name as "func" def _dispatcher(): return () @array_function_dispatch(_dispatcher) def func(): pass try: func._implementation(bad_arg=3) except TypeError as e: expected_exception = e try: func(bad_arg=3) raise AssertionError("must fail") except TypeError as exc: if exc.args[0].startswith("_dispatcher"): # We replace the qualname currently, but it used `__name__` # (relevant functions have the same name and qualname anyway) pytest.skip("Python version is not using __qualname__ for " "TypeError formatting.") assert exc.args == expected_exception.args @pytest.mark.parametrize("value", [234, "this func is not replaced"]) def test_dispatcher_error(self, value): # If the dispatcher raises an error, we must not attempt to mutate it error = TypeError(value) def dispatcher(): raise error @array_function_dispatch(dispatcher) def func(): return 3 try: func() raise AssertionError("must fail") except TypeError as exc: assert exc is error # unmodified exception def test_properties(self): # Check that str and repr are sensible func = dispatched_two_arg assert str(func) == str(func._implementation) repr_no_id = repr(func).split("at ")[0] repr_no_id_impl = repr(func._implementation).split("at ")[0] assert repr_no_id == repr_no_id_impl @pytest.mark.parametrize("func", [ lambda x, y: 0, # no like argument lambda like=None: 0, # not keyword only lambda *, like=None, a=3: 0, # not last (not that it matters) ]) def test_bad_like_sig(self, func): # We sanity check the signature, and these should fail. with pytest.raises(RuntimeError): array_function_dispatch()(func) def test_bad_like_passing(self): # Cover internal sanity check for passing like as first positional arg def func(*, like=None): pass func_with_like = array_function_dispatch()(func) with pytest.raises(TypeError): func_with_like() with pytest.raises(TypeError): func_with_like(like=234) def test_too_many_args(self): # Mainly a unit-test to increase coverage objs = [] for i in range(40): class MyArr: def __array_function__(self, *args, **kwargs): return NotImplemented objs.append(MyArr()) def _dispatch(*args): return args @array_function_dispatch(_dispatch) def func(*args): pass with pytest.raises(TypeError, match="maximum number"): func(*objs) class TestNDArrayMethods: def test_repr(self): # gh-12162: should still be defined even if __array_function__ doesn't # implement np.array_repr() class MyArray(np.ndarray): def __array_function__(*args, **kwargs): return NotImplemented array = np.array(1).view(MyArray) assert_equal(repr(array), 'MyArray(1)') assert_equal(str(array), '1') class TestNumPyFunctions: def test_set_module(self): assert_equal(np.sum.__module__, 'numpy') assert_equal(np.char.equal.__module__, 'numpy.char') assert_equal(np.fft.fft.__module__, 'numpy.fft') assert_equal(np.linalg.solve.__module__, 'numpy.linalg') def test_inspect_sum(self): signature = inspect.signature(np.sum) assert_('axis' in signature.parameters) def test_override_sum(self): MyArray, implements = _new_duck_type_and_implements() @implements(np.sum) def _(array): return 'yes' assert_equal(np.sum(MyArray()), 'yes') def test_sum_on_mock_array(self): # We need a proxy for mocks because __array_function__ is only looked # up in the class dict class ArrayProxy: def __init__(self, value): self.value = value def __array_function__(self, *args, **kwargs): return self.value.__array_function__(*args, **kwargs) def __array__(self, *args, **kwargs): return self.value.__array__(*args, **kwargs) proxy = ArrayProxy(mock.Mock(spec=ArrayProxy)) proxy.value.__array_function__.return_value = 1 result = np.sum(proxy) assert_equal(result, 1) proxy.value.__array_function__.assert_called_once_with( np.sum, (ArrayProxy,), (proxy,), {}) proxy.value.__array__.assert_not_called() def test_sum_forwarding_implementation(self): class MyArray(np.ndarray): def sum(self, axis, out): return 'summed' def __array_function__(self, func, types, args, kwargs): return super().__array_function__(func, types, args, kwargs) # note: the internal implementation of np.sum() calls the .sum() method array = np.array(1).view(MyArray) assert_equal(np.sum(array), 'summed') class TestArrayLike: def setup_method(self): class MyArray(): def __init__(self, function=None): self.function = function def __array_function__(self, func, types, args, kwargs): assert func is getattr(np, func.__name__) try: my_func = getattr(self, func.__name__) except AttributeError: return NotImplemented return my_func(*args, **kwargs) self.MyArray = MyArray class MyNoArrayFunctionArray(): def __init__(self, function=None): self.function = function self.MyNoArrayFunctionArray = MyNoArrayFunctionArray def add_method(self, name, arr_class, enable_value_error=False): def _definition(*args, **kwargs): # Check that `like=` isn't propagated downstream assert 'like' not in kwargs if enable_value_error and 'value_error' in kwargs: raise ValueError return arr_class(getattr(arr_class, name)) setattr(arr_class, name, _definition) def func_args(*args, **kwargs): return args, kwargs def test_array_like_not_implemented(self): self.add_method('array', self.MyArray) ref = self.MyArray.array() with assert_raises_regex(TypeError, 'no implementation found'): array_like = np.asarray(1, like=ref) _array_tests = [ ('array', *func_args((1,))), ('asarray', *func_args((1,))), ('asanyarray', *func_args((1,))), ('ascontiguousarray', *func_args((2, 3))), ('asfortranarray', *func_args((2, 3))), ('require', *func_args((np.arange(6).reshape(2, 3),), requirements=['A', 'F'])), ('empty', *func_args((1,))), ('full', *func_args((1,), 2)), ('ones', *func_args((1,))), ('zeros', *func_args((1,))), ('arange', *func_args(3)), ('frombuffer', *func_args(b'\x00' * 8, dtype=int)), ('fromiter', *func_args(range(3), dtype=int)), ('fromstring', *func_args('1,2', dtype=int, sep=',')), ('loadtxt', *func_args(lambda: StringIO('0 1\n2 3'))), ('genfromtxt', *func_args(lambda: StringIO('1,2.1'), dtype=[('int', 'i8'), ('float', 'f8')], delimiter=',')), ] @pytest.mark.parametrize('function, args, kwargs', _array_tests) @pytest.mark.parametrize('numpy_ref', [True, False]) def test_array_like(self, function, args, kwargs, numpy_ref): self.add_method('array', self.MyArray) self.add_method(function, self.MyArray) np_func = getattr(np, function) my_func = getattr(self.MyArray, function) if numpy_ref is True: ref = np.array(1) else: ref = self.MyArray.array() like_args = tuple(a() if callable(a) else a for a in args) array_like = np_func(*like_args, **kwargs, like=ref) if numpy_ref is True: assert type(array_like) is np.ndarray np_args = tuple(a() if callable(a) else a for a in args) np_arr = np_func(*np_args, **kwargs) # Special-case np.empty to ensure values match if function == "empty": np_arr.fill(1) array_like.fill(1) assert_equal(array_like, np_arr) else: assert type(array_like) is self.MyArray assert array_like.function is my_func @pytest.mark.parametrize('function, args, kwargs', _array_tests) @pytest.mark.parametrize('ref', [1, [1], "MyNoArrayFunctionArray"]) def test_no_array_function_like(self, function, args, kwargs, ref): self.add_method('array', self.MyNoArrayFunctionArray) self.add_method(function, self.MyNoArrayFunctionArray) np_func = getattr(np, function) # Instantiate ref if it's the MyNoArrayFunctionArray class if ref == "MyNoArrayFunctionArray": ref = self.MyNoArrayFunctionArray.array() like_args = tuple(a() if callable(a) else a for a in args) with assert_raises_regex(TypeError, 'The `like` argument must be an array-like that implements'): np_func(*like_args, **kwargs, like=ref) @pytest.mark.parametrize('numpy_ref', [True, False]) def test_array_like_fromfile(self, numpy_ref): self.add_method('array', self.MyArray) self.add_method("fromfile", self.MyArray) if numpy_ref is True: ref = np.array(1) else: ref = self.MyArray.array() data = np.random.random(5) with tempfile.TemporaryDirectory() as tmpdir: fname = os.path.join(tmpdir, "testfile") data.tofile(fname) array_like = np.fromfile(fname, like=ref) if numpy_ref is True: assert type(array_like) is np.ndarray np_res = np.fromfile(fname, like=ref) assert_equal(np_res, data) assert_equal(array_like, np_res) else: assert type(array_like) is self.MyArray assert array_like.function is self.MyArray.fromfile def test_exception_handling(self): self.add_method('array', self.MyArray, enable_value_error=True) ref = self.MyArray.array() with assert_raises(TypeError): # Raises the error about `value_error` being invalid first np.array(1, value_error=True, like=ref) @pytest.mark.parametrize('function, args, kwargs', _array_tests) def test_like_as_none(self, function, args, kwargs): self.add_method('array', self.MyArray) self.add_method(function, self.MyArray) np_func = getattr(np, function) like_args = tuple(a() if callable(a) else a for a in args) # required for loadtxt and genfromtxt to init w/o error. like_args_exp = tuple(a() if callable(a) else a for a in args) array_like = np_func(*like_args, **kwargs, like=None) expected = np_func(*like_args_exp, **kwargs) # Special-case np.empty to ensure values match if function == "empty": array_like.fill(1) expected.fill(1) assert_equal(array_like, expected) def test_function_like(): # We provide a `__get__` implementation, make sure it works assert type(np.mean) is np.core._multiarray_umath._ArrayFunctionDispatcher class MyClass: def __array__(self): # valid argument to mean: return np.arange(3) func1 = staticmethod(np.mean) func2 = np.mean func3 = classmethod(np.mean) m = MyClass() assert m.func1([10]) == 10 assert m.func2() == 1 # mean of the arange with pytest.raises(TypeError, match="unsupported operand type"): # Tries to operate on the class m.func3() # Manual binding also works (the above may shortcut): bound = np.mean.__get__(m, MyClass) assert bound() == 1 bound = np.mean.__get__(None, MyClass) # unbound actually assert bound([10]) == 10 bound = np.mean.__get__(MyClass) # classmethod with pytest.raises(TypeError, match="unsupported operand type"): bound() def test_scipy_trapz_support_shim(): # SciPy 1.10 and earlier "clone" trapz in this way, so we have a # support shim in place: https://github.com/scipy/scipy/issues/17811 # That should be removed eventually. This test copies what SciPy does. # Hopefully removable 1 year after SciPy 1.11; shim added to NumPy 1.25. import types import functools def _copy_func(f): # Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard) g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__, argdefs=f.__defaults__, closure=f.__closure__) g = functools.update_wrapper(g, f) g.__kwdefaults__ = f.__kwdefaults__ return g trapezoid = _copy_func(np.trapz) assert np.trapz([1, 2]) == trapezoid([1, 2])