403Webshell
Server IP : 66.29.132.122  /  Your IP : 3.145.42.1
Web Server : LiteSpeed
System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : admazpex ( 531)
PHP Version : 7.2.34
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py
import pytest
from pytest import param
from numpy.testing import IS_WASM
import numpy as np


def values_and_dtypes():
    """
    Generate value+dtype pairs that generate floating point errors during
    casts.  The invalid casts to integers will generate "invalid" value
    warnings, the float casts all generate "overflow".

    (The Python int/float paths don't need to get tested in all the same
    situations, but it does not hurt.)
    """
    # Casting to float16:
    yield param(70000, "float16", id="int-to-f2")
    yield param("70000", "float16", id="str-to-f2")
    yield param(70000.0, "float16", id="float-to-f2")
    yield param(np.longdouble(70000.), "float16", id="longdouble-to-f2")
    yield param(np.float64(70000.), "float16", id="double-to-f2")
    yield param(np.float32(70000.), "float16", id="float-to-f2")
    # Casting to float32:
    yield param(10**100, "float32", id="int-to-f4")
    yield param(1e100, "float32", id="float-to-f2")
    yield param(np.longdouble(1e300), "float32", id="longdouble-to-f2")
    yield param(np.float64(1e300), "float32", id="double-to-f2")
    # Casting to float64:
    # If longdouble is double-double, its max can be rounded down to the double
    # max.  So we correct the double spacing (a bit weird, admittedly):
    max_ld = np.finfo(np.longdouble).max
    spacing = np.spacing(np.nextafter(np.finfo("f8").max, 0))
    if max_ld - spacing > np.finfo("f8").max:
        yield param(np.finfo(np.longdouble).max, "float64",
                    id="longdouble-to-f8")

    # Cast to complex32:
    yield param(2e300, "complex64", id="float-to-c8")
    yield param(2e300+0j, "complex64", id="complex-to-c8")
    yield param(2e300j, "complex64", id="complex-to-c8")
    yield param(np.longdouble(2e300), "complex64", id="longdouble-to-c8")

    # Invalid float to integer casts:
    with np.errstate(over="ignore"):
        for to_dt in np.typecodes["AllInteger"]:
            for value in [np.inf, np.nan]:
                for from_dt in np.typecodes["AllFloat"]:
                    from_dt = np.dtype(from_dt)
                    from_val = from_dt.type(value)

                    yield param(from_val, to_dt, id=f"{from_val}-to-{to_dt}")


def check_operations(dtype, value):
    """
    There are many dedicated paths in NumPy which cast and should check for
    floating point errors which occurred during those casts.
    """
    if dtype.kind != 'i':
        # These assignments use the stricter setitem logic:
        def assignment():
            arr = np.empty(3, dtype=dtype)
            arr[0] = value

        yield assignment

        def fill():
            arr = np.empty(3, dtype=dtype)
            arr.fill(value)

        yield fill

    def copyto_scalar():
        arr = np.empty(3, dtype=dtype)
        np.copyto(arr, value, casting="unsafe")

    yield copyto_scalar

    def copyto():
        arr = np.empty(3, dtype=dtype)
        np.copyto(arr, np.array([value, value, value]), casting="unsafe")

    yield copyto

    def copyto_scalar_masked():
        arr = np.empty(3, dtype=dtype)
        np.copyto(arr, value, casting="unsafe",
                  where=[True, False, True])

    yield copyto_scalar_masked

    def copyto_masked():
        arr = np.empty(3, dtype=dtype)
        np.copyto(arr, np.array([value, value, value]), casting="unsafe",
                  where=[True, False, True])

    yield copyto_masked

    def direct_cast():
        np.array([value, value, value]).astype(dtype)

    yield direct_cast

    def direct_cast_nd_strided():
        arr = np.full((5, 5, 5), fill_value=value)[:, ::2, :]
        arr.astype(dtype)

    yield direct_cast_nd_strided

    def boolean_array_assignment():
        arr = np.empty(3, dtype=dtype)
        arr[[True, False, True]] = np.array([value, value])

    yield boolean_array_assignment

    def integer_array_assignment():
        arr = np.empty(3, dtype=dtype)
        values = np.array([value, value])

        arr[[0, 1]] = values

    yield integer_array_assignment

    def integer_array_assignment_with_subspace():
        arr = np.empty((5, 3), dtype=dtype)
        values = np.array([value, value, value])

        arr[[0, 2]] = values

    yield integer_array_assignment_with_subspace

    def flat_assignment():
        arr = np.empty((3,), dtype=dtype)
        values = np.array([value, value, value])
        arr.flat[:] = values

    yield flat_assignment

@pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
@pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
@pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
def test_floatingpoint_errors_casting(dtype, value):
    dtype = np.dtype(dtype)
    for operation in check_operations(dtype, value):
        dtype = np.dtype(dtype)

        match = "invalid" if dtype.kind in 'iu' else "overflow"
        with pytest.warns(RuntimeWarning, match=match):
            operation()

        with np.errstate(all="raise"):
            with pytest.raises(FloatingPointError, match=match):
                operation()


Youez - 2016 - github.com/yon3zu
LinuXploit