Server IP : 66.29.132.122 / Your IP : 18.118.33.35 Web Server : LiteSpeed System : Linux business142.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : admazpex ( 531) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/array_api/ |
Upload File : |
from __future__ import annotations from ._dtypes import ( _boolean_dtypes, _floating_dtypes, _real_floating_dtypes, _complex_floating_dtypes, _integer_dtypes, _integer_or_boolean_dtypes, _real_numeric_dtypes, _numeric_dtypes, _result_type, ) from ._array_object import Array import numpy as np def abs(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.abs <numpy.abs>`. See its docstring for more information. """ if x.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in abs") return Array._new(np.abs(x._array)) # Note: the function name is different here def acos(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.arccos <numpy.arccos>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in acos") return Array._new(np.arccos(x._array)) # Note: the function name is different here def acosh(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.arccosh <numpy.arccosh>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in acosh") return Array._new(np.arccosh(x._array)) def add(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.add <numpy.add>`. See its docstring for more information. """ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in add") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.add(x1._array, x2._array)) # Note: the function name is different here def asin(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.arcsin <numpy.arcsin>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in asin") return Array._new(np.arcsin(x._array)) # Note: the function name is different here def asinh(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.arcsinh <numpy.arcsinh>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in asinh") return Array._new(np.arcsinh(x._array)) # Note: the function name is different here def atan(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.arctan <numpy.arctan>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in atan") return Array._new(np.arctan(x._array)) # Note: the function name is different here def atan2(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.arctan2 <numpy.arctan2>`. See its docstring for more information. """ if x1.dtype not in _real_floating_dtypes or x2.dtype not in _real_floating_dtypes: raise TypeError("Only real floating-point dtypes are allowed in atan2") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.arctan2(x1._array, x2._array)) # Note: the function name is different here def atanh(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.arctanh <numpy.arctanh>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in atanh") return Array._new(np.arctanh(x._array)) def bitwise_and(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.bitwise_and <numpy.bitwise_and>`. See its docstring for more information. """ if ( x1.dtype not in _integer_or_boolean_dtypes or x2.dtype not in _integer_or_boolean_dtypes ): raise TypeError("Only integer or boolean dtypes are allowed in bitwise_and") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.bitwise_and(x1._array, x2._array)) # Note: the function name is different here def bitwise_left_shift(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.left_shift <numpy.left_shift>`. See its docstring for more information. """ if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes: raise TypeError("Only integer dtypes are allowed in bitwise_left_shift") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) # Note: bitwise_left_shift is only defined for x2 nonnegative. if np.any(x2._array < 0): raise ValueError("bitwise_left_shift(x1, x2) is only defined for x2 >= 0") return Array._new(np.left_shift(x1._array, x2._array)) # Note: the function name is different here def bitwise_invert(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.invert <numpy.invert>`. See its docstring for more information. """ if x.dtype not in _integer_or_boolean_dtypes: raise TypeError("Only integer or boolean dtypes are allowed in bitwise_invert") return Array._new(np.invert(x._array)) def bitwise_or(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.bitwise_or <numpy.bitwise_or>`. See its docstring for more information. """ if ( x1.dtype not in _integer_or_boolean_dtypes or x2.dtype not in _integer_or_boolean_dtypes ): raise TypeError("Only integer or boolean dtypes are allowed in bitwise_or") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.bitwise_or(x1._array, x2._array)) # Note: the function name is different here def bitwise_right_shift(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.right_shift <numpy.right_shift>`. See its docstring for more information. """ if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes: raise TypeError("Only integer dtypes are allowed in bitwise_right_shift") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) # Note: bitwise_right_shift is only defined for x2 nonnegative. if np.any(x2._array < 0): raise ValueError("bitwise_right_shift(x1, x2) is only defined for x2 >= 0") return Array._new(np.right_shift(x1._array, x2._array)) def bitwise_xor(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.bitwise_xor <numpy.bitwise_xor>`. See its docstring for more information. """ if ( x1.dtype not in _integer_or_boolean_dtypes or x2.dtype not in _integer_or_boolean_dtypes ): raise TypeError("Only integer or boolean dtypes are allowed in bitwise_xor") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.bitwise_xor(x1._array, x2._array)) def ceil(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.ceil <numpy.ceil>`. See its docstring for more information. """ if x.dtype not in _real_numeric_dtypes: raise TypeError("Only real numeric dtypes are allowed in ceil") if x.dtype in _integer_dtypes: # Note: The return dtype of ceil is the same as the input return x return Array._new(np.ceil(x._array)) def conj(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.conj <numpy.conj>`. See its docstring for more information. """ if x.dtype not in _complex_floating_dtypes: raise TypeError("Only complex floating-point dtypes are allowed in conj") return Array._new(np.conj(x)) def cos(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.cos <numpy.cos>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in cos") return Array._new(np.cos(x._array)) def cosh(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.cosh <numpy.cosh>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in cosh") return Array._new(np.cosh(x._array)) def divide(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.divide <numpy.divide>`. See its docstring for more information. """ if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in divide") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.divide(x1._array, x2._array)) def equal(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.equal <numpy.equal>`. See its docstring for more information. """ # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.equal(x1._array, x2._array)) def exp(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.exp <numpy.exp>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in exp") return Array._new(np.exp(x._array)) def expm1(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.expm1 <numpy.expm1>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in expm1") return Array._new(np.expm1(x._array)) def floor(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.floor <numpy.floor>`. See its docstring for more information. """ if x.dtype not in _real_numeric_dtypes: raise TypeError("Only real numeric dtypes are allowed in floor") if x.dtype in _integer_dtypes: # Note: The return dtype of floor is the same as the input return x return Array._new(np.floor(x._array)) def floor_divide(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.floor_divide <numpy.floor_divide>`. See its docstring for more information. """ if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes: raise TypeError("Only real numeric dtypes are allowed in floor_divide") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.floor_divide(x1._array, x2._array)) def greater(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.greater <numpy.greater>`. See its docstring for more information. """ if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes: raise TypeError("Only real numeric dtypes are allowed in greater") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.greater(x1._array, x2._array)) def greater_equal(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.greater_equal <numpy.greater_equal>`. See its docstring for more information. """ if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes: raise TypeError("Only real numeric dtypes are allowed in greater_equal") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.greater_equal(x1._array, x2._array)) def imag(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.imag <numpy.imag>`. See its docstring for more information. """ if x.dtype not in _complex_floating_dtypes: raise TypeError("Only complex floating-point dtypes are allowed in imag") return Array._new(np.imag(x)) def isfinite(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.isfinite <numpy.isfinite>`. See its docstring for more information. """ if x.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in isfinite") return Array._new(np.isfinite(x._array)) def isinf(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.isinf <numpy.isinf>`. See its docstring for more information. """ if x.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in isinf") return Array._new(np.isinf(x._array)) def isnan(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.isnan <numpy.isnan>`. See its docstring for more information. """ if x.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in isnan") return Array._new(np.isnan(x._array)) def less(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.less <numpy.less>`. See its docstring for more information. """ if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes: raise TypeError("Only real numeric dtypes are allowed in less") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.less(x1._array, x2._array)) def less_equal(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.less_equal <numpy.less_equal>`. See its docstring for more information. """ if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes: raise TypeError("Only real numeric dtypes are allowed in less_equal") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.less_equal(x1._array, x2._array)) def log(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.log <numpy.log>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in log") return Array._new(np.log(x._array)) def log1p(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.log1p <numpy.log1p>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in log1p") return Array._new(np.log1p(x._array)) def log2(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.log2 <numpy.log2>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in log2") return Array._new(np.log2(x._array)) def log10(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.log10 <numpy.log10>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in log10") return Array._new(np.log10(x._array)) def logaddexp(x1: Array, x2: Array) -> Array: """ Array API compatible wrapper for :py:func:`np.logaddexp <numpy.logaddexp>`. See its docstring for more information. """ if x1.dtype not in _real_floating_dtypes or x2.dtype not in _real_floating_dtypes: raise TypeError("Only real floating-point dtypes are allowed in logaddexp") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.logaddexp(x1._array, x2._array)) def logical_and(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.logical_and <numpy.logical_and>`. See its docstring for more information. """ if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes: raise TypeError("Only boolean dtypes are allowed in logical_and") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.logical_and(x1._array, x2._array)) def logical_not(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.logical_not <numpy.logical_not>`. See its docstring for more information. """ if x.dtype not in _boolean_dtypes: raise TypeError("Only boolean dtypes are allowed in logical_not") return Array._new(np.logical_not(x._array)) def logical_or(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.logical_or <numpy.logical_or>`. See its docstring for more information. """ if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes: raise TypeError("Only boolean dtypes are allowed in logical_or") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.logical_or(x1._array, x2._array)) def logical_xor(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.logical_xor <numpy.logical_xor>`. See its docstring for more information. """ if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes: raise TypeError("Only boolean dtypes are allowed in logical_xor") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.logical_xor(x1._array, x2._array)) def multiply(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.multiply <numpy.multiply>`. See its docstring for more information. """ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in multiply") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.multiply(x1._array, x2._array)) def negative(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.negative <numpy.negative>`. See its docstring for more information. """ if x.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in negative") return Array._new(np.negative(x._array)) def not_equal(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.not_equal <numpy.not_equal>`. See its docstring for more information. """ # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.not_equal(x1._array, x2._array)) def positive(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.positive <numpy.positive>`. See its docstring for more information. """ if x.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in positive") return Array._new(np.positive(x._array)) # Note: the function name is different here def pow(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.power <numpy.power>`. See its docstring for more information. """ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in pow") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.power(x1._array, x2._array)) def real(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.real <numpy.real>`. See its docstring for more information. """ if x.dtype not in _complex_floating_dtypes: raise TypeError("Only complex floating-point dtypes are allowed in real") return Array._new(np.real(x)) def remainder(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.remainder <numpy.remainder>`. See its docstring for more information. """ if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes: raise TypeError("Only real numeric dtypes are allowed in remainder") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.remainder(x1._array, x2._array)) def round(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.round <numpy.round>`. See its docstring for more information. """ if x.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in round") return Array._new(np.round(x._array)) def sign(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.sign <numpy.sign>`. See its docstring for more information. """ if x.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in sign") return Array._new(np.sign(x._array)) def sin(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.sin <numpy.sin>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in sin") return Array._new(np.sin(x._array)) def sinh(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.sinh <numpy.sinh>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in sinh") return Array._new(np.sinh(x._array)) def square(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.square <numpy.square>`. See its docstring for more information. """ if x.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in square") return Array._new(np.square(x._array)) def sqrt(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.sqrt <numpy.sqrt>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in sqrt") return Array._new(np.sqrt(x._array)) def subtract(x1: Array, x2: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.subtract <numpy.subtract>`. See its docstring for more information. """ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: raise TypeError("Only numeric dtypes are allowed in subtract") # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.subtract(x1._array, x2._array)) def tan(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.tan <numpy.tan>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in tan") return Array._new(np.tan(x._array)) def tanh(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.tanh <numpy.tanh>`. See its docstring for more information. """ if x.dtype not in _floating_dtypes: raise TypeError("Only floating-point dtypes are allowed in tanh") return Array._new(np.tanh(x._array)) def trunc(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.trunc <numpy.trunc>`. See its docstring for more information. """ if x.dtype not in _real_numeric_dtypes: raise TypeError("Only real numeric dtypes are allowed in trunc") if x.dtype in _integer_dtypes: # Note: The return dtype of trunc is the same as the input return x return Array._new(np.trunc(x._array))